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Modelling the formation of structures after inflation
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The paper studies the growth of inhomogeneities of the inflaton field at the post-inflationary stage of
the evolution of the Universe in realistic inflationary models and the dynamics of inhomogeneities
at the nonlinear stage of evolution. At the beginning of this stage, the inflaton field can be
considered almost homogeneous, and the expansion law of the Universe coincides with that at
the dust-like stage. Over time, inhomogeneities of the inflaton field grow due to gravitational
instability. If the stage of reheating is long enough, these inhomogeneities can give rise to the
first gravitationally bound structures. For the study, a numerical code was written to simulate the
evolution of inhomogeneities at the post-inflationary stage of expansion of the Universe.
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1. Introdution

After inflation, the inflation field forms structures whose evolution leads to the emission of
gravitational waves. These waves are of great interest because they can provide valuable insight
into the mechanism of inflation. In section 2 we derive equations describing the nonlinear evolution
of the field perturbations inside the horizon. In section 3 we discuss the nonlinear phase and initial
conditions for the inflaton field. In section 4 we perform several tests and outline the methods for
computing the nonlinear evolution of the field, and also present preliminary results for the evolution
of structures. Finally, in section 5 we describe methods for computing gravitational waves from the
collapse of structures.

2. Non-linear equations for perturbations of the inflationary field under horizon

After inflation, the bulk of the energy is contained in a highly homogeneous massive scalar
field, described by the action:

S =
 √−g


1
2
gµν∂µφ∂νφ −

1
2

m2φ2


d4x (1)

We are interested in the post-inflationary period of the Universe’s evolution where it enters the MD-
stage. During this stage, the nonrelativistic approximation can be used. We use a non-relativistic
approximation in the form mψ ≫ ψ when we obtain the Schrodinger-Poisson system (4), (5) and
equation (11). Additionally, it is correct that H ≪ m. The field can be split into two parts:
the background ϕ0(t), which is considered homogeneous and dependent only on time, and the
perturbations ϕ(t, x), i.e.:

φ = ϕ0(t) + ϕ(t, x) (2)

The new variable ψ is defined as follows:

ϕ(0) =
e−imtψ(0)
√

2a
3
2 (t)
+ h.c, (3)

with the lower index used to distinguish between the background and perturbations. For a scalar
field with a potential from (1), the approximation of an ideal liquid is valid, in which case it can
be obtained from Einstein’s equations that Bardeen’s scalar potentials are equal [1], therefore the
perturbed metric in a linear approximation will look like ds2 = (1 + 2Φ)dt2 − a2(1 − 2Φ)d x2.
Inserting the approximations described above and metric in the equations of motion of the field and
averaging the double-frequency summands, we obtain the equations for the field ψ. The equation for
the gravitational potential Φ follows from the Einstein equations within the same approximations:

i ψ = − ∆ψ

2ma2(t)
+ mΦψ (4)

∆Φ = 4πGm2 |ψ |2 − |ψ0 |2
a(t) (5)

Hereafter,is derivative with respect to physical time. Thus, the Schrödinger-Poisson (SP) system has
been obtained, which describes the behavior of perturbations at the MD stage in the non-relativistic
approximation. The formation and gravitational collapse of matter structures after inflation will be
described by the evolution of the field ψ.
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3. The evolution of the field perturbations before entering the horizon.

3.1 Initial conditions

Inflationary models predict a power spectrum for a value R which is defined as follows.
Hereafter, ′ is derivative with respect to conformal time:

R = −

Φ +

a′

aφ′0
φ


(6)

The Einstein equations for the 00 and 0i components can be expressed in terms of the Mukhanov-
Sasaki variable, which defined as:

u = −
a2φ′0

a′ R (7)

And the equations take the following form [1]:

∆Φ = 4πG
a
a′φ

′2
0


a′u

a2φ′0

 ′
, (8)

a′

a2


a3

a′Φ

 ′
= 4πGφ′0u. (9)

Thus, we can separate the solutions for the gravitational field and perturbations based on the
predictions of the inflationary model for R, using numerical solutions of the Einstein equations.
These solutions can then be evolved to the stage where the Schrödinger-Poisson approximation is
applicable. The equations for linear evolution are provided in the next section.

3.2 Linear evolution of the perturbations in the super- and subhorizon regimes

The system of equations for SP was derived using approximations that are only valid for the
evolution of the subhorizon field perturbations in the non-relativistic regime. To set the initial
conditions based on the spectrum predicted by various inflationary models, we obtained linearized
equations that are accurate both in super- and subhorizon regimes. The equation for ϕ is as follows:

ϕ + ϕ0 − 4 Φ ϕ0 + 3H( ϕ + ϕ0) + 2Φm2ϕ0 −
∆ϕ

a2 + m2(ϕ + ϕ0) = 0 (10)

Thus, there are three equations: one for the background, obtained from the action (1) assuming
no perturbations; one for the perturbations; and Einstein’s equation for the 00 component, which
is used to determine the gravitational potential. These equations completely determine the linear
evolution of the field perturbations at all wavelengths. By substituting the ansatz for the ψ field and
using only the non-relativistic approximation, one again arrives at the Schrödinger equation:

eimt

√
2a3/2


2m2Φψ0 − 2im ψ − ∆ψ

a2


+ h.c +O(mt) = 0 (11)

Thus, the non-relativistic Schrödinger equation may be applied both for super- and subhorizon
regimes if mt ≫ 1. The matching between the solutions for the φ field and the non-relativistic field
ψ with respect to the parameter mt will be demonstrated in the section 4.
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4. Numerical simulations

4.1 Equations in dimensionless variables

In order to minimize the impact of numerical rounding errors, we convert the equations to
dimensionless form as follows: 



x = x0 · xpr
t = t0 · tpr
ψ = ψ0 · ψpr
Φ = Φ0 · Φpr

a = a0


tpr
t∗

2/3

(12)

Then the Schrödinger-Poisson system takes the form:




i
dψpr
dtpr

= −
∆prψpr

2a2
pr

+ Φprψpr

∆prΦpr =
4π
apr

(|ψpr |2 − 1)
(13)

In equation (12) we have six parameters. However, using the dimensional analysis, one can establish
relations between them, revealing only two physical parameters: ψ0, which is the average value of
the field, and m, which is the mass of the inflaton field.

4.2 Numerical solutions for linearized equations

To assess the applicability of the nonrelativistic approximation, we solved the linear equations
for ψ and ϕ for a set of initial times. We then examined the difference in contrasts δ, which is
defined as:

δ ≡
δT0

0

T0
0

(14)

where δT0
0 represents the energy-momentum tensor associated with the perturbations, and T0

0
represents the energy momentum tensor for the background field. To achieve this, we calculated
the 00 components of the energy momentum tensor in terms of fields ψ and ϕ on the solutions of
(10) and (11). Then we calculated the corresponding contrasts, which we denoted as δ(ψ) and δ(ϕ).
In Fig.1 we plotted the ratio

δ(ψ) − δ(ϕ)δ(ψ)

 for the set of initial times. One can observe a linear

decrease in the difference with increasing time.

4.3 Numerical methods for nonlinear equations

The system is solved jointly at each time step using the fourth-order symplectic method [2]
to solve the Schrödinger equation. The Poisson equation is solved by decomposing the right-hand
side into Fourier, dividing by k2, and performing the inverse Fourier transform using Fast Fourier
Transform algorithm. The complexity of this solution is O(N3) operations. Distributed memory
computing (MPI) is employed to reduce the calculation time.
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Figure 1: Relative difference of δ in terms of ψ and ϕ

To check the correctness of the modelling, we compare solutions of linear and non-linear
equations for the small perturbations. The solutions obtained from linear and non-linear equations
in a specific regime are plotted in figure 2. As can be seen, the solutions coincide at first, but they
start to differ when approaching to the nonlinear regime.

Figure 3 shows the results for the relative difference
ψN=128−ψN=256

ψN=256

 between two solutions

obtained on different lattices. We also look at the averaged value of the field at large momentum k
to see the moment when our lattice stops accommodating structures: the results are shown in the
figure 4. It is evident that at some point there has been a significant increase in values of modes,
which momentum is close to the maximum momentum that fits to the lattice. This suggests that the
collapsed structures no longer fit into the lattice.

Preliminary simulations were conducted to study the evolution and collapse of the structures.
The results are presented in figure 5, where the colour represents the field density.

In order to evaluate the contribution of specific pulse ranges to the formation of structures, we
will use the Press-Schechter formalism [1], introducing the smoothed density contrast δR(x, t) as:

δR(x, t) =


d3yδ(x + y, t)WR(y) (15)

Wr (y) is defined as:

Wr (y) =
3

4π
a3

0
R3 θ(R − a0 |y |) (16)

where R is the size of the collapsing region, a0 defined by (12). Then, for the Fourier image δR(x, t),
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Figure 2: Solutions of linear and nonlinear equations

the following is true:

δR(k, t) =
3 j1(kR/a0)

kR/a0
δ(k, t) (17)

where δ(k, t) is the matter density contrast. This formula shows that the main contribution to the
smoothed density contrast comes from perturbations with conformal momenta k < a0/R. In this
way the programme will evaluate the impact of modes with different momenta to the formation of
gravitationally bound structures.

5. Gravitational waves from structure formation

We simulate the evolution of the ψ field and at each time step we know the configuration of
the field. The main gravitational wave signal is expected to come from the collapse of the inflaton
field structures. The equations for the tensor modes have the form [3]:

hi j(x, t) + 3H hi j(x, t) −
∇2

a2 hi j(x, t) = 16πGΠTT
ij (18)

whereΠTT
ij is the transverse and traceless part of the energy-momentum tensor. The solution of such

an equation for the quantity h, defined as hi j(k, η) = ahi j(k, η) for the modes inside the horizon,
assuming that no gravitational waves have been emitted up to the moment η = ηi and after some
moment η = η f , is given by the Green’s function and can be written as [4]:

hi j(η, k) = −16πG
k

 η f

ηi

dη′ek(η−η
′)a(η′)ΠTT

ij (η′, k) (19)
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Figure 3: Relative difference between solutions on grids of 128/256 points in each dimention

We define gravitational waves energy density over a volume V as:

ρgw =
1

32πG
〈 hi j(x, t) hi j(x, t)〉V (20)

One can obtain the expression for the spectrum of the gravitational waves:

Sk(η) =
8πGk3

V


dΩ


p=+,×


 η f

ηi

dη′eik(η f −η′)a(η′)Πp(η′, k)

2

(21)

which is defined as: 
dρgw
d ln k


η>η f

=
Sk(η f )
a4(η)

(22)

and the summation is based on the polarisations of the gravitational waves. Thus, knowing the
field value at each step, we can numerically find the momentum energy tensor and calculate the
contribution to the integral (21) at each time step.

6. Conclusions

In this work, expressions of the nonlinear and linear evolution of the field have been derived. An
interesting result is that the evolution of the non-relativistic field can be described by the Schrödinger-
Poisson system both in super- and subhorizon regimes. This fact was verified numerically. A code
has also been written to compute the nonlinear evolution of structures, and in the future it is planned
to compute the spectrum of gravitational waves for realistic inflationary models.
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Figure 4: Averaged value of the field perturbations with momentum k>0.8kmax

Figure 5: Evolution of two structures (preliminary)
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