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Dedicatory

We dedicate this review to Professor Rubakov who sadly passed away on 19 of October 2022,
while we were collaborating with S. Mironov to obtain the first results that we summarize below.
MVV is indebted to Professor Rubakov for all his teachings in the roughly one year counting with
his scientific advisory, specially his inspiring rigurosity in his daily approach to science.

1. Introduction

Horndeski theory is the most general modification of GR with a real scalar field in the action
such that the equations of motion remain of second order [1–6]. Namely, on top of GR∫

d4G
√−6 ' (1)

consider four general functions �2, �3, �4 and �5 that depend on a scalar field q and the term
- = −(1/2) 6`am`qmaq, where 6`a is the metric with signature (−, +, +, +). Then, Horndeski
theory can be written as [4]

(� =

∫
d4G
√−6

(
�2 − �3 ∇`∇`q + �4(q, -) ' + �4,-

( (
∇`∇`q

)2 −
(
∇`∇aq

)2
)

+ �5�
`a ∇`∇aq −

1
6
�5-

(
(∇`∇`q)3 − 3 (∇`∇`q) (∇a∇dq) ∇a∇dq

+ 2 (∇`∇aq) (∇a∇dq) ∇`∇dq
))
, (2)

where �`a is the Einstein tensor, ∇` is the covariant derivative computed with the Christoffel
symbol Γd`a = 1

26
df

(
m`6af + ma6`f − mf6`a

)
and �4,- = m�4/m- .

Let us notice the generality of (2), including the cosmological constant, minimally coupled
scalars and non-minimally coupled, such as Brans-Dicke. Crucially, it is designed to avoid the
Ostrogradsky ghost, and it allows - without obvious pathologies - to violate the Null Energy
Condition (NEC), which is one of the assumptions for the Penrose - Hawking singularity theorems
to hold (See for instance [7]). However, after many attempts to build all time stable, nonsingular
cosmologies [8–15], it was finally established in the form of a No-Go theorem that under very
general assumptions, gradient instabilities or ghosts will inevitably arise at some time in the entire
evolution of the universe [9–11].

Besides a handful of special assumptions to avoid the instabilities in Horndeski theory such as
"asymptotically strong gravity" or very specific models [11, 15–17], the alternative of Horndeski
theory on spacetimes with torsion has been recently analyzed in [18–33]. In particular, it has
been shown that in Horndeski-Cartan gravity (considering torsion in the second order, metric
formalism), a similar No-Go theorem also holds (in up to the quartic case1) [19]: namely, the all-
time sub/luminality, stability and nonsingularity of an spatially flat FLRW cosmology are mutually
inconsistent, up to a few special cases.

That now there is a further characteristic incompatible with the stable and nonsingular cosmol-
ogy, namely, sub/ luminality, suggests that in further generalizations of the theory the No-Go may

1We consider only the terms in (2) with �2, �3, �4. We denote these theories as "up to quartic".
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break altogether. Indeed, other violations of the No-Go have been recently reported in teleparallel
Horndeski gravity [20], hence supporting the hope that a spacetime with torsion may help to cure
the instability without other pathologies.

This short review is dedicated to Horndeski-Cartan gravity. In section 2 we spell out the theory
and introduce notation for torsion. In section 3 we introduce notation for the perturbative expansion
about a spatially flat FLRW background. In section 4 we extend the class of Horndeski-Cartan
theories and the results of [18, 19] to include quadratic terms in second (torsionful) derivatives of
the scalar with antisymmetric contractions. In section 5 we review a possible classification of these
theories according to the dynamics of the scalar mode. In section 6 we review the No-Go argument
for all time stable, sub/luminal, nonsingular cosmologies. In section 7 we give the conclusions.

2. Up to quartic Horndeski-Cartan Lagrangians

In a spacetime with torsion multiple Horndeski Lagrangians are possible according to different
contractions of the Lorentz indices. These possible contractions can be collected in a two-parameter
family of Horndeski-Cartan Lagrangians, if one stays, for simplicity, in up to quartic case (namely,
no �5). All these new possible contractions boil down to the fact that two torsionful covariant
derivatives (∇̃) acting on the Horndeski scalar do not commute.

Namely, writing the metric compatible derivative ∇̃`+ a = m`+ a + Γ̃a`_+_ on any vector + `,
where Γ̃d`a ≠ Γ̃

d
a`, we have [

∇̃`, ∇̃a
]
q ≠ 0 , (3)

and thus, we can add the following terms proportional to �4,- in the Horndeski action (2) (without
�5), by considering all possible contractions with the metric [18] and the fully antisymmetric tensor
of the terms of the form �4,- (∇̃`∇̃aq)2,

�4,-

( (
∇̃`∇̃`q

)2 + 2
(
∇̃`∇̃aq

)
∇̃`∇̃aq + B

(
∇̃`∇̃aq

)
∇̃a∇̃`q + 1 n `adf

(
∇̃`∇̃aq

)
∇̃d∇̃fq

)
, (4)

with 2 + B = −1. The later condition leaves only two free parameters, say 2 and 1. It guarantees
that the terms in (4) reduce to the standard terms in (2) when we assume a torsionless, Christoffel
connection. It can be readily verified that none of these terms introduces higher than two partial
derivatives in any of the equations of motion, hence, they do not introduce Ostrogradsky ghosts, as
in the torsionless Horndeski theory.

All in all, we can write the two-parameter family of up to quartic Horndeski-Cartan theories
as,

S =

∫
d4G
√−6

(
�2 − �3 ∇̃`∇̃`q + �4(q, -) '̃ + �4,-

( (
∇̃`∇̃`q

)2

−
(
∇̃`∇̃aq

)
∇̃a∇̃`q − 2

(
∇̃`∇̃aq

) [
∇̃`, ∇̃a

]
q + 1 n `adf

(
∇̃`∇̃aq

)
∇̃d∇̃fq

))
. (5)

The family of theories with general parameter 2, but without 1 was already analyzed in [18, 19].
In this review we also show the triviality of the extension of previous results [18, 19] to include a
general parameter 1.

To write the action with explicit torsion, we express the torsionful connection in terms of the
usual GR Christoffel symbol as Γ̃d`a = Γ

d
`a −  d`a .  d`a is named contortion tensor, which can

3
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be written in terms of the torsion tensor as )d`a = Γ̃d`a − Γ̃da`. In this review we consider three
fundamental fields: the metric, scalar and contortion. With our convention of torsionful covariant
derivatives  is antisymmetric in the first and third indices,  `af = − fa`, such that it has 24
independent components 2.

3. Notation for the linearized analysis about the FLRW background

As a first approximation to the dynamics of Horndeski-Cartan theories a linearized analysis
about a spatially flat FLRW background was performed in [18].

In brief, the decomposition of the perturbations into irreducible components under the small
rotation group reads, for the perturbed metric

dB2 =
(
[`a + X6`a

)
dG` dGa (6)

where

[`adG` dGa = 02([)
(
−d[2 + X8 9 dG8 dG 9

)
(7)

is a spatially flat FLRW background metric, [ is conformal time, and we denote spatial indices with
latin letters such as 8 = 1, 2, 3 and space-time indices with greek letters, such as ` = 0, 1, 2, 3. The
metric perturbation is written as

X6`a dG` dGa = 02([)
(
− 2U d[2 + 2 (m8� + (8) d[ dG8

+
(
−2k X8 9 + 2 m8m 9� + m8�9 + m 9�8 + 2 ℎ8 9

)
dG8 dG 9

)
, (8)

with U, �, k, � scalar perturbations, (8 , �8 transverse vector perturbations, and ℎ8 9 , a symmetric,
traceless and transverse tensor perturbation.

The contortion perturbation, can be decomposed as eight scalars denoted as � (n) with = =
1, . . . , 8, six (two-component) transverse vectors denoted as + (m)

8
with < = 1, . . . , 6 and two (two-

component) traceless, symmetric, transverse tensors ) (1)
8 9
, )

(2)
8 9
. In the scalar sector

X scalar
800 = m8�

(1)

X scalar
8 90 = m8m 9�

(2) + X8 9� (3) + n8 9:m:� (4)

X scalar
80: = n8: 9m 9�

(5)

X scalar
8 9: =

(
X8 9m: − X: 9m8

)
� (6) + n8:;m;m 9� (7) +

(
n8 9;m;m: − n: 9;m;m8

)
� (8) , (9)

in the vector sector

X vector
800 = +

(1)
8

X vector
8 90 = m8+

(2)
9
+ m 9+ (3)

8

X vector
80: = m8+

(4)
:
− m:+ (4)

8

X vector
8 9: = X8 9+

(5)
:
− X: 9+ (5)

8
+ m 9m8+ (6)

:
− m 9m:+ (6)

8
, (10)

2This amounts to introduce torsion in the second order formalism, because the equations for the metric remain of
second order. Other approaches in the context of Horndeski have been recently analyzed in [20–33]

4



P
o
S
(
I
C
P
P
C
R
u
b
a
k
o
v
2
0
2
3
)
0
3
3

Quartic Horndeski-Cartan theories M. Valencia-Villegas

and in the tensor sector

X tensor
8 90 = )

(1)
8 9

X tensor
8 9: = m8)

(2)
9:
− m:) (2)

98
, (11)

All in all, the components of contortion perturbation are

X 8`a = X 
scalar
8`a + X vector

8`a + X tensor
8`a . (12)

On the other hand, the non-vanishing components of the background contortion tensor on the FLRW
background are

0 0 9: = G([)X 9:
0 8 9: = H([)n8 9: , (13)

such that the perturbed contortion with all indices down is

 `af =
0 `af + X `af (14)

Finally, the perturbed scalar field q(G) is written as q([) + Π where Π is a spacetime dependent
scalar field perturbation and q([) is the background scalar field. q([) can be distinguished from
the perturbed scalar q(G) by the context.

It is important to notice that the equations of motion for the background fields G, H, q, 0 fix
H = 0 as the only nontrivial background solution. They also fix the remaining torsion background
G in terms of q and 0.

4. Triviality of the 1 term in the Horndeski-Cartan theories about the spatially flat
FLRW background

The theories considered in [18, 19] correspond to the action (5) without parameter 1, which
corresponds to all terms of the form �4,- (∇̃`∇̃aq)2 contracted with the metric. Below we extend
the results of [18, 19] to all 2 and 1, namely to all terms of the form�4,- (∇̃`∇̃aq)2 contracted with
the metric and the fully antisymmetric tensor, by proving the latter are trivial on our cosmological
background. Let us note, however, that in principle one could expect nontrivial modifications to the
dynamics of perturbations (12) by the latter terms, because ∇̃`∇̃aq has an antisymmetric part.

It suffices to show that the linearized dynamics of (5) does not depend on the parameter 1.
This is easy to see for the tensor and scalar sector: let us consider the last term of the action (5)∫

d4G
√−6 1 �4,- n

`adf
(
∇̃`∇̃aq

)
∇̃d∇̃fq. Writing contortion explicitly,∫

d4G
√−6 1 �4,- n

`adf  _′`a  W′df 6
_′_ 6W

′W (∇̃_q)∇̃Wq . (15)

• For the tensor sector, since the scalar perturbationΠ does notmixwith the tensor perturbations
the Lorentz indices _ and W must be 0. Now, necessarily 6_′0 , 6W′0 need to be the background
component [00 in all perturbative expressions of (15), because otherwise, if they were to
contribute with a perturbation X600 or X680 in a quadratic expansion, they would be either U,

5
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m8� or (8 , which do not mix with the symmetric, transverse and traceless tensor perturbations.
Thus, (15) is proportional to  0`a  0df which, according to equations (13) and (11) for
either backgrounds or perturbations, are symmetric in `, a and d, f, and contracted with the
antisymmetric tensor vanishes all 1 (15) contribution to the tensor sector.

• For the scalar sector let us consider the unitary gauge in which Π and � are set to zero.
Then, again the Lorentz indices _ and W are 0 in all contributions to the quadratic expansion
of (15). Now, at least one of the contortion fields in (15) must be a perturbation in the
quadratic expression O(X2) of (15): Indeed, if we assume that both contortion components
are backgrounds, close inspection shows that since the only nonvanishing torsion background
is symmetric −0 : 90 =

0 0 9: = G X 9: (recall that 0 8 9: = n8 9: H = 0 , 0 800 =
0 80: = 0)

these two contortion backgrounds vanish contracted with the antisymmetric tensor (e.g.
n `0d0 (0 _′`0) (0 W′d0) = 0).

If in the quadratic expression O(X2) both perturbations are of contortion, then necessarily
_′ = W′ = 0. Namely, the term looks like n `adf X B20;0A0`a X B20;0A0df . Now, in such a term
only the first two lines in (9) can contribute, but both of the perturbations cannot be ∝ � (1)
because both indices d and ` cannot be simultaneously 0. Hence, from the second line in (9)
antisymmetry indicates that at least one of the torsion perturbations must be � (4) .

On the other hand, if there is at most one perturbation of contortion, both _′ and W′ cannot
be simultaneously different from 0. Indeed, without lost of generality, the only remaining
type of term is n `adf (X scalar

_′`a ) (
0 W′df) 6_

′0 6W
′0 ¤q2, from which only the W′ ≠ 0, _′ = 0

contribution is nonzero. Namely, with W′ = 8 necessarily f = 0 in the torsion background,
giving n `a 90 (X scalar

0`a ) (
0 8 90) [00 X680 ¤q2. Meaning again by the second line in (9) and

antisymmetry that these type of terms are also proportional to � (4) . All in all, in the scalar
sector the quadratic expression O(X2) of (15) is proportional to � (4) .
Now, as described in detail in [19], the Lagrange multiplier � (5) imposes � (4) ≡ 0 as a
constraint - an equation which is not modified by the 1 terms (15) by the same argument
above (namely, there is no 1 � (5) type term that could modify the constraint equation)-, hence
vanishing all 1 terms (15) contribution to the scalar sector.

• The vector sector is not our main interest in this note. However, a direct computation shows
that the 1 contribution vanishes on-shell by using the constraints + (2)

8
= +

(3)
8

(as described
in detail in [18]), imposed by the Lagrange multipliers + (4)

8
.

In conclusion, all results in [18, 19] follow without modification irrespective of the 1 term.

5. Classification of the family of Horndeski-Cartan theories

The action (5) can be brought to the following form on the spatially flat FLRW background
(See [18] for a detailed derivation)

( =

∫
d[ d3G 04

[
1

2 02

(
Gg

( ¤ℎ8 9 )2 − Fg (m: ℎ8 9)2
)

+ 1
02

(
¤k
(
GSI − 2

1
02 GSII m8m8

)
¤k − FS (m8k)2

)]
, (16)

6
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Table 1: Summary of tensor and scalar modes classified according to the parameter 2 of the theory. This
holds for all 1.
† A No-Go theorem holds in this case for all-time stable, non-singular and subluminal cosmology.
∗This is a result that holds only in high momentum and provided the assumption of a healthy graviton, namely,
a stable, non ghost and subluminal graviton.
∗∗ The no ghost, stability and subluminality conditions are satisfied if �4 > −2 - �4,- > 0 .

2 < 0 2 = 0 † 0 < 2 ≤ 2 2 > 2

Scalar mode
Non wave-like

dispersion relation.
Not a ghost∗.

Wave-like
dispersion relation†

Non wave-like
dispersion relation.

A ghost∗.

Non wave-like
dispersion relation.

Graviton Is massless∗∗ Is massless†, ∗∗ Is massless∗∗

Vector sector Non dynamical.

where ℎ8 9 is the graviton andk is a spacetime dependent scalar perturbation. Gg , Fg , GSI, GSII, FS
are a combination of the �� lagrangian functions and their derivatives expressed in terms of
0([), q([) (The relevant expressions are given in the discussions below. For more details see [19]).

The key take aways from (16) are:

i) There is one tensor perturbation, the massless graviton. Its dynamics is the same for all 2.

ii) The vector sector is non dynamical

iii) There is one scalar perturbation. Its dynamics depends on the parameter 2 of the theory. In
fact, the scalar mode of these theories has different stability, ghost/ no-ghost and super/ sub/
luminality properties depending on the parameter 2 of the theory (See table 1).

iv) Importantly, the theory with parameter 2 = 0 is special because it is the only one in which the
scalar mode propagates with a relativistic dispersion relation, as can be directly seen from the
action (16). Thus, the analysis below is restricted to the theory with 2 = 0.

Let us notice that the first and third aspects are somewhat unexpected, because there is a kinetic
mixing of contortion with the scalar field in the action (5), which would naively signal potentially
more DOFs than in the torsionless Horndeski theory. This issue may suggest that symmetries or
accidental symmetries are at play (see a related discussion in [18]).

6. The search for all-time stable, nonsingular and sub/ luminal cosmologies: a
NO-GO for up-to quartic Horndeski-Cartan theories

Avoiding the singularity theorems of Penrose andHawking has been one of themainmotivations
to explore Horndeski theory. The latter can support nonsingular solutions because it can violate the
Null Energy Condition (NEC) (See [7] for a review).

In particular, looking for a cosmological solution in Horndeski-Cartan theory without initial
singularity

• I) we require that there is a lower bound on the scale factor 0([) > 11 > 0, with the bounce
happening when ¤� > 0 holds.

7
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Besides, we also aim for theories where the small perturbations about the cosmological back-
ground - namely, the graviton ℎ8 9 and the scalar mode k in (16) - do not suffer gradient instabilities
and remain sub/ luminal. Let us explicitly state these conditions: to start, let us consider only the
theory with parameter 2 = 0, because only this class has a scalar mode with a relativistic dispersion
relation.

Now, let us consider the speed squared of the graviton 22
6 and the scalar 22

B

22
6 =

Fg
Gg , 22

B =
FS
GS� , (17)

where

Gg = 2 �2
4

�4+ 2- �4,-
, Fg = 2�4 , GS� = 3Gg + G

2
g Σ

Θ2 , FS = 1
02

d
d[

(
0 Gg )
Θ

)
− Fg . (18)

Θ =
4 G2

g \

0 F4
g
, Σ =

2 G3
g f

0 F6
g

, ) = Fg (22
6 − 2) , (19)

where \ and f are complicated expressions that depend on q([), 0([) background fields, whose
explicit form is not essential for the discussion below (See [19] for the explicit expressions).

With these definitions, the conditions to have no ghosts are

• II.a) Gg > 0 ,GS� > 0 ,

so that the kinetic terms contribute with a positive energy. To avoid gradient instabilities we also
require

• II.b) Fg > 0 , FS > 0 ,

which, let us note, is clearly necessary to have real speeds of propagation provided II.a.
It turns out that it is very difficult to find solutions in Horndeski theory that satisfy I), II.a/ b),

even if they violate the NEC. This has been known as a No-Go theorem, with very few ways to avoid
it [8–15]. In fact, the only ways to satisfy I), II.a/ b) require either to restrict to a specific class
of theories defined by the equation Θ ≡ 0 [17] or, if one remains in the case of general theories,
one needs unconventional assumptions, such as Fg → 0 asymptotically [11, 16]. The latter means
asymptotically strong gravity, although recent advances have shown that there is in fact no issue
with strong coupling [34].

If one wishes, however, to avoid these assumptions one could for instance explore Teleparallel
Horndeski [20, 21] or Beyond Horndeski or Horndeski-Cartan theories, as we will show below. In
the latter, there is a new interesting link between nonsingular, stable and no-ghosty solutions with
the speed of the graviton. In brief, it was shown in [18] that

it is not possible to obtain a nonsingular FLRW cosmology that is always free of gradient
instabilities against the scalar perturbation and an always sub/ luminal graviton. However, it was
also shown that a potentially, arbitrarily short violation of the sub/ luminality of the graviton at any
time can allow nonsingular and stable (first-order) solutions.

Let us review the argument. It follows the same line of reasoning as in [9–11]: to state it let us
also require all-time sub/ luminal modes

8
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• III) 22
6 ≤ 1 , 22

B ≤ 1 ,

let us avoid the apparent strong gravity condition by requiring

• IV) a lower bound Fg ([) > 12 > 0 as [→ ±∞,

and finally, let us require that

• V) Θ vanishes at most a finite amount of times.

By (V) the theory is not defined by the equation Θ ≡ 0, and thus we remain in the generic
Horndeski-Cartan theories only with the condition 2 = 0.

The argument: Let us notice that

A) by (I) - (III)

# =:
0 Gg Fg (22

6 − 2)
Θ

≠ 0 ,

because Θ is a regular (finite) function of �, q,

B) by (I), (IV) and the third inequality in (II), # is monotonous increasing

3 #

3 [
> 02 Fg > 0,

and in fact, there is a lower, positive bound on its slope 3 #
3 [

> 12
1 12 > 0 as [ → ±∞. As a

consequence, we know the behavior of # around the zeros of Θ: denoting with [I any zero of
Θ, then # ([) → ∞ as [→ [−I ([ approaches [I by the left) and # ([) → −∞ as [→ [+I .

One can somewhat easily see that conclusions (A) and (B) are contradictory. Let us see, if we take
a value of # < 0 at some time [∗ and we move forward in time, two things can happen: (8) either
one finds an [I (a zero of Θ) where [∗ < [I , or (88) one can move towards [→ +∞ without finding
an [I , namely with # continuous in the interval ([∗, +∞). Now, in the former possibility (8), we
know by (B) that # ([) is positive as [→ [−I , thus, provided our starting point # ([∗) < 0, it means
that # ([) has already vanished before reaching [I , namely, for some [ with [∗ < [ < [I (because
# is continuous in that interval), hence violating (A). This situation is depicted in Figure 1a.

In the latter possibility (88), we also know by (B) that # increases as time grows and that #
cannot have an horizontal asymptote as [ → +∞ (recall 3 #

3 [
> 12

1 12 > 0 as [ → ±∞), hence
provided our starting point # ([∗) < 0, and that # is continuous in the time interval ([∗,∞) (without
[I), # will eventually cross zero, again violating (A). This situation is depicted in Figure 1b.

Similarly, if we take a value of # > 0 at some time [∗ and we move backwards in time, we find
by an analogous argument that (A) does not hold at all times.

In fact, (III) can be relaxed to 22
6 < 2 and the argument still holds. But, an almost everywhere

subluminal graviton turning to 22
6 > 2 during an arbitrarily short interval at any time, is enough to

avoid this No-Go argument. Indeed, an explicit example was built in [19].

9
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(a)With [∗ < [I . (b) No [I in the time interval ([∗,∞).

Figure 1: Behavior of # ([) with one and no zeros of Θ (denoted as [I) for initial value # ([∗) < 0.

7. Conclusions

We summarized recent advances in Horndeski-Cartan gravity (Galileons with torsion in the
second order formalism) [18, 19]. We showed that these results trivially extend to include quadratic
terms in second (torsionful) derivatives of the scalar with antisymmetric contractions.

In particular, a possible classification of these theories according to the dynamics of the scalar
mode, presented in [18], and the No-Go argument for all time stable, sub/luminal, nonsingular
cosmologies [19] hold even after including the former type of terms. Namely, (up to quartic)
Horndeski-Cartan gravity can support all-time linearly stable nonsingular solutions if there exists
at an arbitrary time a superluminal phase for the graviton and by at least an amount 26 ≥

√
2 2. We

argued that this modification of the usual No-Go, as well as other recent indications of its violation
in teleparallel Horndeski [20] may suggest that further generalizations may lead to all time stability
without any classical pathologies. Indeed, whether a short-lived superluminal phase for the graviton
is a serious pathology either for the classical theory (e.g. closed timelike curves) and for potential
UV completions remains to be investigated, specially provided that the perturbations propagate in
a background that spontaneously breaks Lorentz invariance [35–37].
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