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1. Introduction

Black holes and their radiation, continue to be enigmatic and mystifying phenomena [1, 2].
Typically the textbook version of information paradox is formulated in terms of mixed/pure state
transition. Another formulation refers to the entanglement entropy content of the fields surrounding
the black hole. For example for four dimensional black hole the paradox manifests itself when we
consider infinite regions containing spatial infinity on both sides of maximally extended version of
such black hole. The entanglement entropy of these regions increases during the time evolution and
after some time exceeds the black hole entropy itself.

To save the unitarity which is violated in the situation being just described the series of papers
[5–9] introduced a so-called entanglement islands (or island mechanism) stopping the entanglement
growth. This mechanism has its roots in the requirement that the path integral geometry generating
the reduced density matrix corresponding to the certain entanglement region 𝐼 under consideration
(i.e. original geometry plus slits along the this 𝐼) should be consistent with the gravitational
equations of motion. Consequences of these considerations, entanglement islands and their effect
on quantum information dynamics has been studied in different versions and setups, for example
in two-dimensional gravity [5–13] and in moving mirrors [14, 15]. The origin of entanglement
modification for dynamical gravity is hidden in special class of wormhole solutions elusively present
in the entanglement entropy calculation when the dynamical gravity is turned on [6–13]. This
could be viewed in fact in some sense as a far-looking implication of the pioneering paper by
Valery Rubakov, George Lavrelashvili and Peter Tinyakov [16] devoted to the loss of coherence
due to presence of wormhole-like contributions (however, instead of breaking coherence replica
wormholes save it generating island phenomena). These objects will be renowned as baby-universe
in what follows in this context [17, 18].

Rigorous arguments in favor of entanglement islands are accessible in a straightforward manner
in lower-dimensional models, while in higher-dimensional setup our possibilities to study this class
of problems are quite restricted. One of the possibilities is to use the s-wave approximation i.e.
effectively reduce higher-dimensional setup to lower dimensional one and assume the existence of
islands in a similar form as in the lower-dimensional models. This was done in [19] and generalized
in different contexts recently for different setups [20–34].

In this contribution, we consider the following question: what happens with information
paradox, entanglement islands in the s-wave approximation if we confine Hawking radiation in each
(left and right) exterior of eternal black hole with the perfectly reflecting boundary.

Placing black hole in a cavity is a classical way to understand a wide range of phenomena
related to them – this introduces a new scale at the spatial infinity, regulates a possible divergences
related to infinities etc. [35, 36]. As an example of importance of infrared modes in the context of
entanglement islands see [33].

We find that the introduction of the cavity leads to the significant qualitative behaviour of the
entanglement entropy evolution and island islands – in the absence of entanglement islands one
can find locations of boundaries without information paradox. On the other hand we find that now
the entanglement islands literally does not work unavoidably disappearing for some restricted time.
This paper is largely based on [37].
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The paper is organized as follows. In section 2, we setup the notation, present out path-integral
geometries and remind basic formulae from BCFT. Section 3 is devoted to the entanglement entropy
dynamics and we introduce blinking island effect in it. Final section is devoted to conclusions.

2. Setup

Entanglement entropy of matter in BCFT2

Boundary conformal field theory (BCFT) is the analog of ordinary conformal field theory but
with the presence of boundaries. The simplest boundary field theory in two-dimensions is the
theory defined on upper half-plane (UHP). Denoting 𝑥1 coordinate the Euclidean time and 𝑥2 is the
spatial coordinate we define the metric

𝑑𝑠2 = 𝑑𝑥2
1 + 𝑑𝑥2

2 = 𝑑𝑧𝑑𝑧, 𝑧 = 𝑥1 + 𝑖𝑥2, 𝑥1 ∈ (−∞,∞), 𝑥2 ≥ 0, (1)

The region 𝑅 we are interested in consists of union of intervals

𝑅 = [𝑧𝑎1 , 𝑧𝑏1] ∪ . . . ∪ [𝑧𝑎𝑛 , 𝑧𝑏𝑛], (2)

and the entanglement entropy 𝑆m(𝑅) = −Tr(𝜌𝑅 log 𝜌𝑅) is defined via resuced density matrix 𝜌𝑅

corresponding to the region 𝑅. Entanglement entropy is given [38, 39] as the limit 𝑆m(𝑅) =

− lim𝑛→1 𝜕𝑛
(
Tr 𝜌𝑛

𝑅

)
with the trace being expressed as the certain correlation of primary operators

with conformal dimension ℎ𝑛 = ℎ̄𝑛 = 𝑐/24(𝑛 − 1/𝑛) – twist operators1 inserted at the endpoints of
region 𝑅 (called entangling interval or entangling region).2 Explicilty one can express the trace as
the correlation function

Tr 𝜌𝑛𝑅 = ⟨𝜙(𝑧𝑎1 , 𝑧𝑎1)𝜙(𝑧𝑏1 , 𝑧𝑏1) . . . 𝜙(𝑧𝑎𝑛 , 𝑧𝑎𝑛)𝜙(𝑧𝑏𝑛 , 𝑧𝑏𝑛)⟩UHP. (3)

We consider two-dimensional BCFT consisting of 𝑐 copies of two-dimensional free mass-
less Dirac fermions in curved spacetime with the boundary conditions preserving the conformal
invariance [40–42]. For such a theory the entanglement entropy of region (2) is given by [43, 44]

𝑆(𝑅) =1
3

𝑛∑︁
𝑖, 𝑗=1

log |𝑧𝑎𝑖 − 𝑧𝑏 𝑗
| − 1

3

𝑛∑︁
𝑖< 𝑗

log |𝑧𝑎𝑖 − 𝑧𝑎 𝑗
| |𝑧𝑏𝑖 − 𝑧𝑏 𝑗

| − 𝑛 log 𝜀

+1
6

𝑛∑︁
𝑖, 𝑗=1

log |𝑧𝑎𝑖 − 𝑧𝑎 𝑗
| |𝑧𝑏𝑖 − 𝑧𝑏 𝑗

| − 1
6

𝑛∑︁
𝑖, 𝑗=1

log |𝑧𝑎𝑖 − 𝑧𝑏 𝑗
| |𝑧𝑏𝑖 − 𝑧𝑎 𝑗

|,
(4)

where 𝜀 is UV cutoff.
Under conformal transformation 𝑧 = 𝑧(𝑤) correlation function of primary operators on UHP

transforms as

⟨𝜙(𝑤1, �̄�1) . . . 𝜙(𝑤𝑚, �̄�𝑚)⟩Ω =

𝑚∏
𝑗=1

(
𝑑𝑧

𝑑𝑤

)ℎ𝑛 ���
𝑤=𝑤 𝑗

(
𝑑𝑧

𝑑�̄�

) ℎ̄𝑛 ���
�̄�=�̄� 𝑗

×⟨𝜙(𝑧1, 𝑧1) . . . 𝜙(𝑧𝑚, 𝑧𝑚)⟩UHP.

(5)

1Here 𝑐 is the central charge.
2Each endpoint should not belong to the boundary.
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From a similar property following from the Weyl trasnformation property of primary operators for
transition between metric 𝑑𝑠2 = 𝑑𝑤𝑑�̄� → 𝑑𝑠2 = 𝑒2𝜌(𝑤,�̄�)𝑑𝑤𝑑�̄� entanglement entropy changes as

𝑆m

���
𝑑𝑠2=𝑒2𝜌(𝑤,�̄�)𝑑𝑤𝑑�̄�

= 𝑆m

���
𝑑𝑠2=𝑑𝑤𝑑�̄�

+ 𝑐

6

𝑚∑︁
𝑖=1

log 𝑒𝜌(𝑤𝑖 ,�̄�𝑖 ) . (6)

Following s-wave approximation from [19] for geometries of the form

𝑑𝑠2 = 𝑒2𝜌(𝑤,�̄�)𝑑𝑤𝑑�̄� + 𝑟2𝑑Ω2
𝑑 , (7)

we effectively neglect the spherical part of the metric 𝑑Ω2
𝑑

and consider two-dimensional BCFT on
background

𝑑𝑠2 = 𝑒2𝜌(𝑤,�̄�)𝑑𝑤𝑑�̄�. (8)

As in [19] we assume that the obtained results in such approximation captures all main features of
dynamics in the original backgroun in higher dimensions.

Geometry, introduction of the boundaries and path-integral

The geometry of interest is given by the metric of the four-dimensional Schwarzschild black
hole

𝑑𝑠2 = − 𝑓 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑓 (𝑟) + 𝑟2𝑑Ω2
2, 𝑓 (𝑟) = 1 − 𝑟ℎ

𝑟
, (9)

at 𝑟 > 𝑟ℎ, −∞ < 𝑡 < ∞, where 𝑟ℎ = 2𝐺𝑀 denotes the black hole horizon, 𝑀 is the mass of the
black hole, 𝐺 is the gravitational constant and 𝑑Ω2

2 is the angular part of the metric. We consider
only the two-dimensional part of the metric (9) relying on the s-wave approximation described
above and within its framework omitting the angular variables in Kruskal coordinates

𝑈 = − 1
𝜅ℎ

𝑒−𝜅ℎ (𝑡−𝑟∗ (𝑟 ) ) , 𝑉 =
1
𝜅ℎ

𝑒𝜅ℎ (𝑡+𝑟∗ (𝑟 ) ) , 𝜅ℎ = 1/2𝑟ℎ, (10)

we are left with the two-dimensional metric of the form

𝑑𝑠2 = −𝑒2𝜌(𝑟 )𝑑𝑈𝑑𝑉, 𝑒2𝜌(𝑟 ) = 𝑓 (𝑟)𝑒−2𝜅ℎ𝑟∗ (𝑟 ) , (11)

where 𝑟∗(𝑟) is tortoise coordinate given by 𝑟∗(𝑟) = 𝑟 + 𝑟ℎ log |𝑟 − 𝑟ℎ |/𝑟ℎ. It is convenient now to
relate Kruskal coordinates to timelike 𝑇 and spacelike 𝑋 variables

𝑈 = 𝑇 − 𝑋, 𝑉 = 𝑇 + 𝑋, (12)

expressed in terms of Schwarzschild coordinates as

𝑇 = ±𝑒𝜅ℎ𝑟∗ (𝑟 )

𝜅ℎ
sinh 𝜅ℎ𝑡, 𝑋 = ±𝑒𝜅ℎ𝑟∗ (𝑟 )

𝜅ℎ
cosh 𝜅ℎ𝑡, (13)

where the upper (lower) sign corresponds to the right (left) wedge. We Wick rotate Kruskal time
𝑇 = −𝑖T and this also defines the Euclidean Schwarzschild time 𝜏 = 𝑖𝑡 periodic with a period of
2𝜋/𝜅ℎ. The coordinate transformation (13) now takes the form

T = ±𝑒𝜅ℎ𝑟∗ (𝑟 )

𝜅ℎ
sin 𝜅ℎ𝜏, 𝑋 = ±𝑒𝜅ℎ𝑟∗ (𝑟 )

𝜅ℎ
cos 𝜅ℎ𝜏. (14)
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22 23 24

Figure 1: Lorentzian (left) and Euclidean (center) Kruskal diagram of a two-sided Schwarzschild black
hole in the presence of two symmetric boundaries at 𝑟 = 𝑟0 drawn in blue. The Euclidean Kruskal diagram
corresponds to the interior of the disk, that maps conformally to the upper half-plane (right).

and left (right) half-plane 𝑋 < 0 (𝑋 > 0) corresponds to the left (right) wedge of Lorentzian black
hole. It is straightforward to see that in the (T , 𝑋) plane curves 𝑟 = const correspond to circles
centered at the point T = 𝑋 = 0 and 𝜏 = const to the straight lines passing through this point. We
consider the exterior of the Euclidean black hole, i.e. 𝑟 ≥ 𝑟ℎ, and the origin of the (T , 𝑋) plane
corresponds to 𝑟 = 𝑟ℎ.

Introducing a complex coordinates

𝑤 = 𝑋 + 𝑖T , �̄� = 𝑋 − 𝑖T , (15)

we get the Euclidean version of the metric (11) in the form

𝑑𝑠2 = 𝑒2𝜌(𝑤,�̄�)𝑑𝑤𝑑�̄�, 𝑒2𝜌(𝑤,�̄�) =
𝑊 (𝑒−1𝜅2

ℎ
𝑤�̄�)

𝜅2
ℎ
𝑤�̄�

[
1 +𝑊 (𝑒−1𝜅2

ℎ
𝑤�̄�)

] , (16)

where 𝑊 (𝑥) is Lambert W function. Total geometry given by (16) (i.e. at −∞ < T , 𝑋 < ∞) is
just the complex plane endowed with the non-trivial metric. Spherically symmetric boundary is
located at the radial coordinate 𝑟 = 𝑟0, where 𝑟0 > 𝑟ℎ, in the analytically extended Schwarzschild
geometry. Two boundaries both in the right and left wedges are located at the same radial coordinate.
The Euclidean geometry in the plane (T , 𝑋) corresponds to the interior of a disk with the radius
𝐿0 = 𝑒𝜅ℎ𝑟∗ (𝑟0 )/𝜅ℎ, see Fig.1. Quantum fields (Dirac fermions) now are restricted by the boundary
at 𝑟 < 𝑟0 via reflecting boundary condition being imposed. So from the path-integral point of view
the wavefunctional of our interest is given by the integration over the geometry part with T < 0,
i.e. over the lower half of the disk from Fig.1.

The next step is to perform conformal mapping of the Euclidean geometry given by the central
picture in Fig.1 to the upper half-plane with non-trivial curved metric and then implement Weyl
transformation to the flat metric upper half-plane. In this way we obtain explicit form of the
entanglement entropy given by the composition of transformation rules for conformal mappings (5)
and Weyl transformations (6). The map from the interior of the disk with radius 𝐿0 to the UHP is

5
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22 23 24

Figure 2: The schematic depicture of the region 𝑅2 (magenta) in: two-boundary Lorentzian geometry (left)
and its Euclidean version (right).

defined by
𝑧 = 𝑖

𝐿0 + 𝑤

𝐿0 − 𝑤
, 𝑧 = −𝑖 𝐿0 + �̄�

𝐿0 − �̄�
. (17)

Generalized entropy functional

The reduced density matrix of Hawking radiation collected in 𝑅 is defined by tracing out the
states in the complement region 𝑅, which includes the black hole interior. The island mechanism
prescribes that the states in some regions 𝐼 ⊂ 𝑅, called entanglement islands, are to be excluded
from tracing out.

The island contribution can be taken into account via the generalized entropy functional defined
as [8, 9]

𝑆gen [𝐼, 𝑅] =
Area(𝜕𝐼)

4𝐺
+ 𝑆m(𝑅 ∪ 𝐼). (18)

Here 𝜕𝐼 denotes the boundary of the entanglement island, 𝐺 is Newton’s constant, and 𝑆m is the
entanglement entropy of conformal matter. One should extremize this functional over all possible
island configurations

𝑆ext
gen [𝐼, 𝑅] = ext

𝜕𝐼

{
𝑆gen [𝐼, 𝑅]

}
, (19)

and then choose the minimal one.

3. Entanglement entropy in eternal black hole in the presence of reflecting walls

Let us calculate the entanglement entropy of the region 𝑅2, which is the union of two intervals
located between bulk points b± and the boundary in the corresponding left/right wedge (magenta
curves in Fig.2). In the island phase we assume the inclusion of the island region 𝐼2 given by the
“interval” between two points a− and a+ in different wedges (green curves in Fig.2)

Entanglement entropy without island contribution

Here we study the entanglement entropy without island phase and explicitly choose the points
b± as

b+ = (𝑟𝑏, 𝑡𝑏) , b− = (𝑟𝑏,−𝑡𝑏) . (20)

6
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Figure 3: Time dependence of entanglement entropy without an island (21) for different boundary positions
without taking into account entanglement islands. The entropy saturation time increases with the increase of
boundary location 𝑟0.

With this choice of points after some algebra one writes down the time-dependent entanglement
entropy of 𝑅2 as

𝑆(𝑅2) =
𝑐

6
log

(
4 𝑓 (𝑏) cosh2 𝜅ℎ𝑡𝑏

𝜅2
ℎ
𝜀2

)
+ 𝑐

6
log

(
2 sinh2 𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏))

cosh 2𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏)) + cosh 2𝜅ℎ𝑡𝑏

)
. (21)

Note that in the limit 𝑟0 → ∞ the second term of (21) tends to zero leading to infinite growth of
entanglement. The time dependence of the entanglement entropy (21) for different positions of the
boundary 𝑟0 and the comparison with the entanglement entropy for the case without boundaries
(i.e. at 𝑟0 → ∞) are shown in Fig. 3.

Blinking island effect – island disappears for some time

Now let use the formula (18) and observe how the entanglement entropy evolution is changed
due to the presence of islands. Due to the symmetric choice of endpoints b± (20) of the region
𝑅2 and the symmetrical location of boundaries in both wedges, it follows that the endpoints a± of
island 𝐼2 are also symmetric and are given as follows

a+ = (𝑟𝑎, 𝑡𝑎) , a− = (𝑟𝑎,−𝑡𝑎) , (22)

where the point a+ (a−) is located in the right (left) wedge. The generalized entropy (18) with the
symmetric island 𝐼2 is

𝑆gen [𝐼2, 𝑅2] = 𝑆wb
𝐼 (𝑅2) + 𝑆b

𝐼 (𝑅2), (23)

where the first term 𝑆wb
𝐼
(𝑅2) is independent of radial coordinate 𝑟0 of boundary. In the limit 𝑟0 → ∞

we are left only with this term corresponding to the generalized entropy for a two-sided black hole
with regions extending to spacelike infinity [19]

𝑆wb
𝐼 (𝑅2) =

2𝜋𝑟2
𝑎

𝐺
+ 𝑐

3
log

(
4
√︁
𝑓 (𝑟𝑎) 𝑓 (𝑟𝑏) cosh 𝜅ℎ𝑡𝑎 cosh 𝜅ℎ𝑡𝑏

𝜅2
ℎ
𝜀2

)
+ 𝑐

3
log

(
cosh 𝜅ℎ (𝑟∗(𝑟𝑎) − 𝑟∗(𝑟𝑏)) − cosh 𝜅ℎ (𝑡𝑎 − 𝑡𝑏)
cosh 𝜅ℎ (𝑟∗(𝑟𝑎) − 𝑟∗(𝑟𝑏)) + cosh 𝜅ℎ (𝑡𝑎 + 𝑡𝑏)

)
.

(24)
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Figure 4: Time dependence of entanglement entropy taking into account nontrivial island configuration for
a black hole with symmetric boundary for different boundary locations 𝑟0. For 𝑟0 = 100 we see that no
islands are needed to avoid information paradox (red line is below the gren one), while for 𝑟0 = 200 we see
instantaneous transition to red line from green one and the back – i.e. island is switched of and information
paradox is present for some time period.

The second term of generalized entropy (23) is the contribution purely due to the boundary inclusion

𝑆b
𝐼 (𝑅2) =

𝑐

3
log

(
cosh 𝜅ℎ (2𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏) − 𝑟∗(𝑟𝑎)) + cosh 𝜅ℎ (𝑡𝑎 + 𝑡𝑏)
cosh 𝜅ℎ (2𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏) − 𝑟∗(𝑟𝑎)) − cosh 𝜅ℎ (𝑡𝑎 − 𝑡𝑏)

)
+ 𝑐

6
log

(
4 sinh2 𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑎)) sinh2 𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏))

(cosh 2𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑎)) + cosh 2𝜅ℎ𝑡𝑎) (cosh 2𝜅ℎ (𝑟∗(𝑟0) − 𝑟∗(𝑟𝑏)) + cosh 2𝜅ℎ𝑡𝑏)

)
.

(25)
In accordance with the prescription of the island formula, it is necessary to carry out extrem-

ization with respect to the radial and time coordinates (𝑟𝑎, 𝑡𝑎) of the island boundaries in (23), i.e.
find the solutions of {

𝜕𝑟𝑎𝑆gen [𝐼2, 𝑅2] (𝑟𝑎, 𝑡𝑎, 𝑟𝑏, 𝑡𝑏, 𝑟0, 𝑟ℎ, 𝑐, 𝐺) = 0,
𝜕𝑡𝑎𝑆gen [𝐼2, 𝑅2] (𝑟𝑎, 𝑡𝑎, 𝑟𝑏, 𝑡𝑏, 𝑟0, 𝑟ℎ, 𝑐, 𝐺) = 0.

(26)

We consider solutions to the system (26) corresponding to the location of the island boundary 𝑟𝑎

near the horizon, i.e. 𝑟𝑎 = 𝑟ℎ + 𝑋 , 𝑋/𝑟ℎ ≪ 1. We also work within the framework of the condition
𝑟𝑏 ≫ 𝑟ℎ (for the applicability of the s-wave approximation [19]) and also assuming 𝑐𝐺𝜅2

ℎ
≪ 1.

The analysis of the system (26) has been performed in the paper [37] analytically and numer-
ically (it is quite cumbersome and complicate, so we refer reader to this paper). The resulting
evolution of the entanglement entropy could be summarized as follows (see Fig.4). One can ob-
serve, that in comparison with the island effect the entanglement entropy unavoidably leads to the
time region, where the island solution does not exist. Thus, if we have the following situation. If
the boundary is located close enough to the black hole horizon the entanglement cannot exceed
its thermodynamical cousin, so we do not need any islands. However, if it is located faraway
enough we meet the time region where the entanglement instantaneously blinks to the “no island”
entanglement for some time, thus leading to information paradox.
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4. Discussion and conclusion

In this paper we considered the effect of reflecting boundaries on the evolution of entanglement
entropy of free massless Dirac fermions in the eternal black hole. We consider as the evolution of
entanglement entropy without any entanglement islands, as well as taking their contribution into
account. Also we use s-wave approximation thus effectively reducing four-dimensional problem
of calculation of entanglement entropy to the two-dimensional one. Let us summarize our main
findings

• The evolution of entanglement entropy without islands changes due to the presence of reflect-
ing boundaries surrounding the black hole as follows. It follows mainly the same curve as for
the entropy without boundaries, however, instead of infinite growth we observe saturation at
some time moment (depending on how faraway boundary is located from horizon). Taking
this into account for close enough boundary one can avoid information paradox (entanglement
entropy does not exceed the thermodynamic one).

• In the absence of boundaries the entanglement islands saves the unitarity (in other words
allow us to avoid information paradox). As we saw in the text above in the presence of
boundaries the information paradox could be present for some locations of the boundary.
However, one can show that in the presence of the boundaries (see Fig.4 the entanglement
islands disappear a short time – thus leading to information paradox. We call this “blinking
island effect”.
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