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Machine learning is increasingly being applied in elementary particle physics, and the DEAP-3600
dark matter detector is no exception. One application of the new algorithm is the event position
reconstruction in the detector. Here, we present updated results on the application of a fully-
connected neural network for quality improvement. We also describe the structure of the neural
network, its changes from the previous version, and a comparison with existing event position
reconstruction algorithms.
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1. Introduction

The Standard Model (SM) is the theory describing all known particle interactions. The
discovery of the Higgs boson in 2012 completed the model. However, certain phenomena are still
not accounted by the SM. Such problems, in particular, are the problem of neutrino oscillations
and neutrino mass, as well as the problem of dark matter. Huge experiments are being conducted
around the world to study these phenomena. Each of them has made progress, but we still don’t
know the orgin and nature of dark matter (DM). Considering that, according to the latest result from
the Planck experiment, DM makes up about 27 percent of the entire mass-energy of the Universe
[1], discovering dark matter would bring key knowledge in the understanding the structure of the
physical world. One of the detectors searching for dark matter is the DEAP-3600 detector.

2. The Detector

DEAP-3600 is a single-phase liquid argon (LAr) direct-detection dark matter experiment,
operating 2 km underground at SNOLAB (Sudbury, Canada). The leading limit on the WIMP-
nucleon spin-independent cross section on a LAr target of 3.9 × 10−45 cm2 (1.5 × 10−44 cm2) for
a 100 GeV/c2 (1 TeV/c2) WIMP mass at 90% C. L. was reached during the last analysis [2]. The
detector contains (3269 ± 24) kg LAr [3] during the second fill in a spherical acrylic vessel (AV)
with an inner diameter of 1.7 m and viewed by 255 inward-facing 8” diameter Hamamatsu R5912
HQE low radioactivity photomultiplier tubes (PMTs), submerged in a water Cherenkov muon veto
(MV) (Figure 1 (a)). The AV is coated on the inside with tetraphenyl butadiene (TPB) wavelength
shifter [4], so that the LAr scintillation light, peaked at 128 nm, is converted to visible for efficient
detection with PMTs surrounding the AV. The top 30 cm of the AV is filled with gaseous argon
(GAr). The GAr/LAr interface is 55 cm above the equator of the AV. A full description of the
detector can be found here elsewhere [5].

3. Motivation

One of the largest contribution to the background rate for the WIMP search is 𝛼 particles.
Signals from 𝛼-decays from short- and long-lived 222Rn progeny as well as short-lived 220Rn
progeny are observed at several locations inside the detector [2].

These include the LAr target, the LAr/TPB and TPB/AV surfaces, and the surfaces of the acrylic
flowguides (FGs) in the AV neck. After applying fiducial cuts, one of the largest contributions to the
background rate is from 210Po 𝛼-decays on the surfaces of the acrylic FGs in the AV neck (Figure
1 (b)). Scintillation light is observed from events in the neck, which are simulated with a thin LAr
film coating the FGs. The FGs are not coated in TPB, and the acrylic absorbs most of the UV
scintillation photons incident on their surfaces. This results in shadowed event topologies in which
only a small fraction of the emitted photons reach the AV PMTs [2].

Despite the fact that fiducial cuts exclude most backgrounds, it greatly reduce the overall
detector acceptance (Figure 2).

Therefore, there are two reasons to implement the new algorithm in analyzing the event position
reconstruction in the detector:
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Figure 1: a: Schematic of the DEAP-3600 detector; b: Flowguide components in the AV neck [2]

Figure 2: WIMP acceptance as a function of PE, broken down by cut type [2]

• To identify events occured in the neck flowguides;

• To identify events in the bulk to increase the confidence radius and increase fiducial volume
of the detector and its exposure.

Currently, two algorithms are used to reconstruct the event position in the detector. The first
algorithm is called MBLikelihood (MBL) [2]. The main idea of the algorithm is simulating events
in the LAr volume which is divided in a three-dimensional grid. The pattern of charges detected
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by the 255 PMTs distributed around the LAr vessel is then used to build a likelilhood function. A
maximum likelihood procedure is then used for determining the event position.

The second algorithm is called TimeFit2 (TF2) [6]. This algorithm has a similar working
principle, but it uses the time distribution of photon registration to make a pattern. The principle
scheme of TimeFit2 position reconstruction algorithm is shown on Figure 3.

Figure 3: The principle scheme of TimeFit2 position reconstruction algorithm [6]

The likelihood functions in these algorithms operate under the assumption that events originate
in the LAr bulk — this causes a bias in the case of events originating from the neck. Therefore,
both algorithms work well in the LAr area of the detector, but for events in the neck region, they do
not match in their results and cannot accurately determine the event position.

It was decided to use a neural network as a third algorithm to solve a set of problems to
determine the position of such events.

4. Machine learning algorithm workflow

We are facing the following task: to create an algorithm that will work with good efficiency
in the bulk volume but most importantly will be able to distinguish the events that occurred in the
detector neck.

Different machine learning methods were tested and the most simple and effective resulted to
be a neural network. [7–9]. The diagram of the neural network is shown in the Figure 4. It has the
following main parts:

• A neuron is a mathematical function that calculates an output value by a weighted average
of the sum of the incoming values. There are three types of neurons: input (into which the
value of one of the variables from the training set is passed), output (from which the model
prediction is taken) and hidden neurons (which are inside the model and in which intermediate
computations take place). The type of mathematical function (activation function) in each
neuron is the first main parameter for tuning the neural network.

• A layer is a set of neurons. The number of neurons in a layer and the number of hidden
layers is the second main parameter for tuning the neural network. Only the number of input
neurons (it is equal to the number of variables in the training set) and output neurons (it
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is equal to the number of quantities to be determined) is fixed. By varying the number of
neurons in hidden layers, as well as the number of hidden layers itself, the efficiency of the
neural network can be controlled.

• Each neuron passes its value to the next layer with some weight:

𝑦𝑖 = 𝐹 (𝑋) = 𝐹

(∑︁
𝑤𝑖𝑎𝑖

)
,

where 𝐹 is the activation function of the neuron, 𝑤𝑖 is the weight of the connection which
connects the current neuron with the 𝑖th neuron of the previous layer, and 𝑎𝑖 is the output
value of the 𝑖th neuron of the previous layer.

The main idea of neural network training is to tune these weight values. This parameter is
the third and the most difficult to control during neural network tuning.

Figure 4: Schematic and operating principle of a fully connected neural network. 𝑎𝑖 is the output value of
the 𝑖th neuron of the previous layer [10]

For the current study, using the ROOT [11], Geant4 [12] and RAT [13] software packages, sets
of Monte Carlo simulations of three types of events of 50,000 each were created: 𝛽-decays of 39Ar,
40Ar nuclear recoil events, and 𝛼-decays of 210Po in the detector neck area (from all 3 flowguides
in total). Therefore these 150,000 events were divided into training set (on which the model will
be trained) and testing set (on which it will be tested with the blind analysis) at a ratio of 70:30.
255 values of charge detected at the internal PMTs, normalized on a scale from zero to one were
used as input variables. As output variable we have X/Y/Z coordinate. It was decided to train the
algorithm for all 3 coordinates separately to tune it more accurately.

The first result of this work can be found here [10]. This neural network structure worked well
and detected neck events with high efficiency, but at the same time it often reconstructed events
from the bulk volume above the real position.
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After additional research, here we want to present an updated framework that performs better
than the previous version.

As a result, the following neural network structure was used for X and Y coordinates (where in
numerator/denominator we have the number of neurons and the activation function on each layer,
respectively):

255 (Input)
relu

→ 255
relu

→ 255
relu

→ 16
relu

→ 1 (Output)
linear

, (1)

and a similar one for the Z coordinate:

255 (Input)
relu

→ 1024
relu

→ 1024
relu

→ 1024
relu

→ 1 (Output)
linear

, (2)

The main result of this structure is shown in Figure 5. We do not display the result for the Y
coordinate as it is identical to the result for the X coordinate due to the symmetry of the detector.

Figure 5: Errors of X (Y) and Z coordinate reconstruction for neural network (FCNN), MBlikelihood (MBL)
and TimeFit2 (TF2). Left: Events originating from the LAr region. Right: Events originating from the neck
region

Therefore, the present neural network model with a new structure works much better than the
previous version. Now the events that actually occurred in the neck region are reconstructed less
often in the bulk area, and the events that actually occurred in the bulk tend to be reconstructed less
often in the neck region. This can be seen by the eliminated humps on both plots compared to the
previous version of the algorithm [10].
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5. Conclusion

Using Monte Carlo simulation, datasets totaling 150 thousand events were created for training
and testing the neural network. After this, training procedures, setting up the neural network and
testing it were carried out. Here, an improvement of the neural network model for detecting events
in the neck of the DEAP-3600 detector was presented.
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