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1. Introduction: Confinement scenario in Coulomb gauge

The Faddeev–Popov operator in Coulomb gauge

M(A) ≡−∇ ·D(A), where D
ac
i (A) = ∂iδ ac+ f abcAb

i (x), (1.1)

plays a crucial role in the Gribov–Zwanziger confinement scenario [1, 2]. It enters the kernelK in
the (classical) Coulomb energy of a color charge distributionρ:

Hcoul =
1
2

∫

d3xd3y ρa(x)Kab(x,y;A)ρb(y), ρa = ρa
matter− f abcAb ·Ec

, (1.2)

where

Kab(x,y;A) ≡
[

M−1 (−∇2) M−1]a,b

x,y . (1.3)

The essence of the scenario can be summarized in the following way: The Coulomb-gauge
condition ∇ ·Aa = 0 does not fix the gauge completely. Gribov [1] suggested to restrict to the
subspace of transverse gauge fields for which the Faddeev–Popov operator is positive, i.e. local
minima with respect tog(x) of

I [A,g] =
∫

dx[gAa(x)]2 , where gAi = g−1Aig+g−1∂ig. (1.4)

The boundary of this Gribov region (GR) is called theGribov horizon. However, even this does not
eliminate the Coulomb-gauge ambiguities completely, one has to further narrow thegauge-field
configuration space to thefundamental modular region(FMR), i.e. the set of absolute minima of
the functional (1.4). Both the GR and the FMR are bounded in every direction and convex. The
dimension of the gauge-field configuration space is huge, so it is reasonable to expect that most
configurations are located close to its boundary (horizon). The interaction kernelK contains the
inverse of the FP operator, which is strictly zero on the horizon and near-zero close to the horizon.
A high density of configurations near the horizon leads to a strong enhancement of the Coulomb
interaction energy, and hopefully causes color confinement.

In this contribution we formulate a simple criterion of confinement for static colorcharges
through properties of eigenstates of the FP operator in Coulomb gauge close to the Gribov horizon,
and then discuss how the fulfillment of this criterion depends on presence/absence of center vor-
tices. Details, as well as some analytic insights on the connections between center vortices and the
Gribov horizon, can be found in a recent publication [3].1

2. Lattice Faddeev–Popov operator and its eigenstates

If we parametrize link variables in SU(2) lattice gauge theory by

Uµ(x) = bµ(x)+ iσcac
µ(x), bµ(x)2 +∑

c
ac

µ(x)2 = 1, (2.1)

1We have also investigated localization properties of the lowest nontrivial eigenvectors of the Faddeev–Popov oper-
ator in Coulomb gauge. These were discussed in Jeff Greensite’s talk atthis conference and in Sect. V of Ref. [4].
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the lattice Faddeev–Popov operator in Coulomb gauge is given by the following expression:

Mab
xy = δ ab∑

k

{

δxy
[

bk(x)+bk(x− k̂)
]

−δx,y−k̂bk(x)−δy,x−k̂bk(y)
}

− εabc∑
k

{

δx,y−k̂a
c
k(x)−δy,x−k̂a

c
k(y)

}

. (2.2)

We are interested in its eigenstates

∑
b,y

Mab
xy φ (n)b

y = λn φ (n)a
x , (2.3)

in particular in their properties near to the Gribov horizon (i.e. in the limitλ → 0). The most
relevant quantities are

• the density of eigenstatesρ(λ ), and

• the average Laplacian:
Fn ≡ ∑

a,xy
φ (n)a

x (−∇2)xyφ
(n)a∗
y . (2.4)

3. A confinement condition

We shall now formulate a simple confinement criterion in terms of properties of eigenstates of
the FP operator. The energy of a static color charge stateΨα

C[A;x] in Coulomb gauge

E =
〈Ψα

C|Hcoul|Ψα
C〉

〈Ψα
C|Ψα

C〉
−〈Ψ0|Hcoul|Ψ0〉 ∼ 〈Kaa(x,x;A)〉 (3.1)

can be easily shown to be given by

E =
1

3V3
∑
n

〈

Fn

λ 2
n

〉

going to
∫ λmax

0

dλ
λ 2 〈ρ(λ )F(λ )〉 for V3 → ∞. (3.2)

An immediate consequence is thatthe excitation energyE of a static, unscreened color charge
is divergent if, at infinite volume,

lim
λ→0

〈ρ(λ )F(λ )〉
λ

> 0. (3.3)

This criterion is a necessary but not sufficient condition for confinement; an explicit example will
be given at the end of Sect. 5. (It is obviously not fulfilled in the free theory, whereρ(λ ) ∼

√
λ ,

F(λ ) = λ , and consequentlyE ∼
√

λmax.)

4. Three ensembles of lattice configurations

We will investigate fulfillment of the condition (3.3) in three ensembles of configurations:

1. full configurations, {Uµ(x)};

2. “vortex-only” configurations: these are obtained from full configurations fixed to the (di-
rect) maximal center gauge [5] by center projection,{Zµ(x) = sign Tr[U (MCG)

µ (x)]};

3. “vortex-removed” configurations, obtained by the recipe of de Forcrand and D’Elia [6]:
{U (R)

µ (x) = Z†
µ(x)Uµ(x)}.

Each configuration in these three ensembles was brought to Coulomb gaugeby maximizing
with respect to gauge transformations, on each time sliceRcoul(t) = ∑x ∑3

k=1
1
2Tr[Uk(x, t)].
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Figure 1: ρ(λ ) andF(λ ) for full lattice configurations.

5. Results

Pure gauge theory at zero temperature.The results forfull configurationsat β = 2.1 are
shown in Figure 1, for a series of lattice volumes.2 Both ρ(λ ) andF(λ ) exhibit a sharp “bend”
nearλ → 0, and behave near 0 like a small power ofλ . A scaling analysis similar to that used in
random matrix theory gives the estimates

ρ(λ ) ∼ λ 0.25
, F(λ ) ∼ λ 0.38

. (5.1)

The confinement condition (3.3) is obviously satisfied, which is a direct manifestation of the mech-
anism proposed by Gribov and Zwanziger.

The situation invortex-only configurationsis displayed in Figure 2. The enhancement of the
density of states is even more pronounced than in full configurations, andboth quantities of interest
seem to converge to a non-zero value in the infinite volume limit

ρ(0) ∼ 0.06, F(0) ∼ 1.0. (5.2)

(though their proportionality to very small powers ofλ cannot be excluded). Once again, the
condition (3.3) is fulfilled.
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Figure 2: ρ(λ ) andF(λ ) for vortex-only (center-projected) configurations.

2The results forβ = 2.3 and 2.4 can be found in Ref. [3], and are qualitatively the same as those forβ = 2.1.

P
o
S
(
L
A
T
2
0
0
5
)
2
9
3

293 / 4



Gribov horizon under the (lattice) microscope Štefan Olejník

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  0.05  0.1  0.15  0.2  0.25

ρ(
λ)

λ

Eigenvalue density, β=2.1

vortex-removed conf’ns

L=20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  0.05  0.1  0.15  0.2  0.25

F
(λ

)

λ

F(λ) ≡ 〈 ϕλ  −∇2 ϕλ 〉, β=2.1

vortex-removed configurations

L=20

Figure 3: ρ(λ ) andF(λ ) for vortex-removed configurations.

The eigenvalue spectrum of the FP operator is drastically different forvortex-removed config-
urations, see Figure 3 for the largest available, 204 lattice. The density displays a series of peaks,
and values ofF(λ ) are organized into bands, separated by gaps. This can be understoodrather
simply: For the Laplacian operator (equal to the FP operator at zero-th order in the gauge coupling)
the eigenvalue density, at finite volume, is a sum of delta-functions, and each eigenvalue is multi-
ply degenerate. The vortex-removed configuration seems to be just a smallperturbation around the
zero-coupling limit, which lifts the degeneracy. In this way, delta-functions inthe density of states
turn into distinct peaks of finite width, and degenerate values ofF(λ ) spread into bands. The num-
ber of values inside thek-th band ofF(λ ) exactly matches the degeneracy of thek-th eigenvalue of
the unperturbed Laplacian operator.

This result demonstrates a deep relation between the Gribov-horizon and center-vortex con-
finement mechanism. Center vortices seem to bethefield configurations providing the mechanism
needed for enhancement of eigenvalues near the horizon.

Pure gauge theory in the deconfined phase.A seemingly paradoxical result is obtained above
the deconfinement transition: our quantities aboveTc look the same as atT = 0 (cf. Figure 4 with
Figs. 1 and 2)! However, one should keep in mind that spacelike links are aconfining ensemble
even in the deconfined phase, and spacelike Wilson loops have an area law behavior.

The result for the deconfined phase can be naturally explained in the Gribov-horizon scenario.
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Figure 4: ρ(λ ) andF(λ ) in the deconfined phase, for full and vortex-removed configurations.
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In Coulomb gauge the gauge fixing is done independently on each 3d time slice. According to the
horizon scenario, on each time slice, 3d configurationsA(x) are favored that lie near the horizon
of a 3d gauge theory, and this enhances the instantaneous color-Coulomb potential. This is true for
everytemperatureT, including in the deconfined phase, because temperature determines the extent
of the lattice in thefourth dimension. Thus, the horizon scenario provides a framework in which
confinement may be understood, but it is not detailed enough to tell us under what conditions the
infinite color-Coulomb potential may bescreenedto give a finite self-energy.3

6. Conclusions

The low-lying eigenvalues of the FP operator in Coulomb gauge tend towardszero as the
lattice volume increases. The density of the eigenvalues goes as a small power of λ , and this,
together with a similar behavior of the average Laplacian,F(λ ), assures the infrared divergence
of the energy of an unscreened color charge. These factssupport the ideas of the Gribov-horizon
confinement scenario.

The constant density of low-lying eigenvalues can be attributed to the vortexcomponent of
gauge-field configurations. A thermalized configuration in a pure gauge theory factors into a con-
fining piece (the vortex-only part), and a piece which closely resembles thelattice of a gauge–Higgs
theory in the Higgs phase (the vortex-removed configuration). This establishesfirm connection be-
tween the center-vortex picture and the Gribov-horizon scenario.

The Gribov–Zwanziger scenario, though invented to explain confinement,is operative also in
the finite temperature deconfined phase.

Here we only covered results of our numerical investigations. Related analytical developments
were omitted and can be found in our recent publication [3].
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