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1. Introduction

In 1932 Ettore Majorana published a paper, in italian, by thetitle "Relativistic theory of parti-
cles with arbitrary angular momentum" [1]. As it is well known the physical interpretation of the
Dirac equation [2] was rather problematic due the existenceof negative energy solutions. In 1931
Dirac proposed a solution in terms of the hole-theory [3] introducing a new kind of particles with
the same mass of the electrons and opposite charge, the positrons. The positron was discovered
by Anderson [4] at the end of 1931, and the paper with the first picture of a positron appeared
at the very beginning of 1932. It is not clear when Majorana wrote this paper (probably during
the summer, according to Amaldi) and in which month of 1932 the paper appeared in Il Nuovo
Cimento. However it seems that the news of the discovery of the positron arrived in Rome only
around the end of 1932. So when Majorana conceived his paper the problem of the negative energy
states was still in his mind. Therefore the aim of the paper was to construct a Dirac-like equation
with only positive energy solutions. Majorana found that this is indeed possible, but that it is nec-
essary that the wave function transforms under unitary representations (UR) of the homogeneous
Lorentz group. These representations are infinite dimensional, as he discovered. The UR’s were
completely unknown at that time, not only among physicists but also among mathematicians. Ma-
jorana showed here his great mathematical ability and his mastering of group theory finding out
two simple unitary representations for the wave function. Iwill discuss some of the reason why his
paper was ignored at the time it was published, although it would have been of great interest from
the point of view of group theory. Majorana’s paper was recovered from the general ignorance
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thanks to Fradkin in 1966 that, stimulated by Amaldi whereashe was visiting Rome, published a
comment to the Majorana’s paper [5]. There were several reasons why this paper was of interest
to physicists in that period. I will mention the incoming useof dynamical groups and the problem
of saturating the algebra of currents atp = ∞ with a set of single particle states. I will discuss why
the equations of Majorana type, involving unitary representations of the Lorentz group, were of
interest for the previous topics. Another interesting point of the infinite component wave equations
is that the CPT theorem does not generally hold. In fact the proof of the theorem in relativistic
local field theories is valid only under the assumption that it is possible to perform an analytical
continuation in the parameters of the Lorentz group. This condition is satisfied in the case of finite
dimensional representations of the Lorentz group but it is not for UR’s. I will discuss briefly this
point.

2. The paper of Majorana about relativistic particles of arbitrary spin

In the paper of Majorana the following linear wave equation of the Dirac type was introduced:

(E +~α ·~p−βM)ψ = 0 (2.1)

Since Majorana wanted to avoid negative energy solutions, he requiredβ to be a positive definite
operator. The other important point was that he did not require the validity of the Klein-Gordon
equation, that is he did not ask for a single mass value associated to the wave function. As a
consequence of the positivity of the operatorβ it follows that the wave function must transform
according to a UR of the Lorentz group. The argument of Majorana is very simple and it is based
on writing down an action from which to derive the wave equation in a variational way. The action
is

∫

d4xψ† (E +~α ·~p−βM)ψ (2.2)

Sinceβ is required to be positive definite one can redefine the wave function according to

ψ̃ = β 1/2ψ (2.3)

The action becomes
∫

d4xψ̃†
(

Γ0E+~Γ ·~p−M
)

ψ̃ (2.4)

where

Γ0 = β−1, ~Γ = β−1/2~αβ−1/2 (2.5)

From this one gets the wave equation

(

Γµ pµ −M
)

ψ̃ = 0, Γµ = (Γ0,~Γ), pµ = (E,~p) (2.6)

Since the action must be Lorentz invariant it follow that thesame must be true for̃ψ†ψ̃ . Therefore,
under a Lorentz transformatioñψ must transform as a UR of the Lorentz group

ψ̃ ′ = Sψ̃ , S†S= 1 (2.7)
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The next step made by Majorana was to evaluate the commutation relations for the generators
of the Lorentz group, which in modern notations read

[Ji ,Jj ] = iεi jkJk, [Ji ,Nj ] = iεi jkNk, [Ni,Nj ] = −iεi jkJk (2.8)

where~J are the generators of the rotation group and~N the boost generators. The relation with the
covariant generatorsJµν is:

Jk =
1
2

εki jJi j , Nk = Jk0 (2.9)

Majorana was an expert in group theory. He had in his bookshelf the Weyl’s book on Quantum
Mechanics and group theory [6], as well as other books more mathematically oriented in the sub-
ject. In particular in Weyl’s book one can find the calculation of the matrix elements in the angular
momentum basis of the electric dipole operator. On the otherhand, according to Amaldi who knew
the way of working of Majorana it is very well possible that hedid the calculation by himself.

Let me now pause for a while in the exam of the paper and let me discuss a bit what we know
today about the irreducible UR’s of the Lorentz group. Firstof all, in complete generality, since the
boosts are vector operators, their action on an angular momentum basis,| j,m〉, can be written as

N+| j,m〉 = Cj [( j −m)( j −m−1)]1/2| j −1,m+1〉−A j[( j −m)( j +m+1)]1/2| j,m+1〉
+ Cj+1[( j +m+1)( j +m+2)]1/2| j +1,m+1〉

N−| j,m〉 = −Cj [( j +m)( j +m−1)]1/2| j −1,m−1〉−A j[( j +m)( j −m+1)]1/2| j,m−1〉
− Cj+1[( j −m+1)( j −m+2)]1/2| j +1,m−1〉

N3| j,m〉 = Cj [( j −m)( j +m)]1/2| j −1,m〉−A jm| j,m〉

− Cj+1[( j +m+1)( j −m+1)]1/2| j +1,m〉 (2.10)

where

A j =
i j0 j1

j( j +1)
, Cj =

i
j

[

( j2− j20)( j2− j21)
4 j2−1

]1/2

(2.11)

These matrix elements depend on the pair( j0, j1). These numbers characterize the Casimir opera-
tors of the Lorentz group

C1 =
1
2

JµνJµν = ~J2−~N2 = j20 + j21−1

C2 =
1
4

εµνρσJµνJρσ = 2~J ·~N = 2i j0 j1

where we have used the matrix elements of the Lorentz generators. We see that( j0, j1) and
(− j0,− j1) are equivalent representations, therefore we may choosej0 to be positive. It turns out
that j0 is the minimum angular momentum in the representation (Cj0 = 0). For finite dimensional
representationsj1 = jmax+1 (Cjmax+1 = 0). On the other hand in the infinite dimensional case the
spin content of the representation isj0, j0 + 1, · · ·. Notice also that, since under parityC2 changes
sign, we have

P : ( j0, j1) ⇒ ( j0,− j1) (2.12)

So far about a generic irreducible representation. The unitarity condition selects two series of
representations:
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• Principal series: j0 integer or half-integer,j1 pure imaginary.

• Supplementary series: j0 = 0, j1 real with| j1| < 1.

Going back to the paper of Majorana, after the equations defining the commutation relations
among the Lorentz group generators he wrote: "The simplest solutions [of the commutation rela-
tions] by means of hermitian operators is given by the following infinite matrices" and he writes
down the matrix elements of the Lorentz generators that can be obtained from the equations (2.10)
by the choice( j0 = 0, j1 = 1/2) or ( j0 = 1/2, j1 = 0). These two representations, later named
after him, correspond toC1 = −3/4 andC2 = 0 and are parity invariant. Majorana did not spend
any other word about this simplicity, so it is not clear what he meant by it. One possibility is that
he refers to the fact that with this choice the matrix elements of the boosts are particularly simple,
since the couplingj → j vanishes and the other two couplingsj → j ±1 are given byi/2. Since
in his paper Majorana mentioned the fact that for his two representationsC2 = 0, it is also possible
that he realized that with his choice the theory is parity invariant, but he did not state it explicitly.
Also, quite strangely, he did not mention the other invariant operatorC1.

At this point Majorana went on to the evaluation of the matrixelements of the four-vector
operatorΓµ . He wrote the commutation relations with the Lorentz generators that, using again
modern notations, read

[Jµν ,Γρ ] = i
(

Γµgνρ −Γνgµρ
)

(2.13)

Then, Majorana wrote directly the matrix elements ofΓµ . These can be obtained by the observation
that onceΓ0 is known, theΓ′

iscan be evaluated from

Γi = −i[Ni,Γ0] (2.14)

Noticing thatΓ0 is a scalar under rotations

〈 j ′,m′|Γ0| j,m〉 = 〈 j,m|Γ0| j,m〉δ j j ′δmm′ (2.15)

and using

Γ0 = [[Ni ,Γ0],Ni] (2.16)

he gotΓ0 up to a constant. Choosing the constant to be one:

〈 j,m|Γ0| j,m〉 = j +1/2 (2.17)

Going to the rest frame (for the moment being we are considering time-like solutions) Majorana
found the mass spectrum

M j =
M

j +1/2
, j = j0, j0 +1, · · · , j0 = 0 or 1/2 (2.18)

By reading the Majorana paper there is no trace about the factthat in order to write down a rela-
tivistic equation involving a four-vector operator one hasto require very stringent constraints on the
representation chosen . As we shall see, the two Majorana representations are the only irreducible
representations for which these constraints are satisfied.
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2.1 Four-vector operators

We take another pause in the analysis of Majorana’s paper to study the problem of a relativistic
wave equation of the Dirac (or Majorana) type involving a four-vector operator. The consistency
of the wave equation

p·Γψ = Mψ (2.19)

requires that the representation to whichψ belongs is contained in the tensor product of the four-
vector representation with the representation itself. Symbolically

ψ ⊂ Γµ ⊗ψ (2.20)

In order to evaluate this tensor product, let me first consider the case of finite dimensional repre-
sentations. Remember that the Lorentz group is isomorphic to SU(2)⊗SU(2) and correspondingly
a finite-dimensional representation can be denoted by(s1,s2) wheres1 ands2 are the spin content
of the twoSU(2) representations. The physical spin operator is the sum of the two spin of the two
commuting groupsSU(2)⊗SU(2). The relation with the notation( j0, j1) is

j0 = |s1−s2|, j1 = (s1 +s2 +1)sign(s1−s2) (2.21)

The spin content of a four-vector is 0 and 1. Therefore we have

Γµ ∈ ( j0, j1) = (0,2) ⇒ (s1,s2) = (1/2,1/2) (2.22)

To evaluate the direct product of two finite dimensional representations of the Lorentz group is triv-
ial in the basis(s1,s2), since we have only to combine separately the spin of the two representations
of SU(2). We get

(

1
2
,
1
2

)

⊗ (s1,s2) =

(

s1 +
1
2
,s2 +

1
2

)

⊕

(

s1 +
1
2
,s2−

1
2

)

⊕

⊕

(

s1−
1
2
,s2 +

1
2

)

⊕

(

s1−
1
2
,s2−

1
2

)

Going back to the( j0, j1) notations we obtain

(0,2)⊗ ( j0, j1) = ( j0, j1 +1)⊕ ( j0+1, j1)⊕ ( j0−1, j1)⊕ ( j0, j1−1) (2.23)

One can show that this relation holds for any irreducible representation( j0, j1). Since the condition
in eq. (2.20) reads

±( j0, j1) ⊂ (0,2)⊗ ( j0, j1) (2.24)

we find easily that the only solutions to this condition are indeed the two Majorana representations

( j0, j1) = (0,1/2) or (1/2,0) (2.25)

More solutions can be found by relaxing the condition thatψ belongs to an irreducible repre-
sentation. Consider the case of "coupled representations". This means that

ψ ∈ ( j0, j1)⊕ ( j ′0, j ′1) (2.26)
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such that

( j0, j1) ⊂ (0,2)⊗ ( j ′0, j ′1), ( j ′0, j ′1) ⊂ (0,2)⊗ ( j0, j1) (2.27)

In this way we satisfy the constraint of eq. (2.20). For instance, the Dirac representation

( j0, j1) =

(

1
2
,
3
2

)

⊕

(

1
2
,−

3
2

)

≈

(

1
2
,0

)

⊕

(

0,
1
2

)

= (s1,s2) (2.28)

satisfies this condition. If we are in the caseM = 0 there is no such constraint on the wave equation

pµΓµψ = 0 (2.29)

and we get, for example, the Weyl’s equations for massless spinors(0,1/2) and(1/2,0). For cou-
pled representation one gets the Majorana equation for massive neutral particles [7], by observing
that under hermitian conjugation, in a finite dimensional representationC2 → −C2 and therefore
j1 →− j1 or equivalently(s1,s2) → (s2,s1). In particular(1/2,0) is equivalent to(1/2,0)∗. More
precisely

iσ2χ∗ ∈ (0,1/2), if χ ∈ (1/2,0) (2.30)

As a consequence, it is possible to define a 4-component Majorana spinor by putting togetherχ
andχ∗

ψM =

(

χ
iσ2χ∗

)

(2.31)

This spinor satisfies the condition of (pseudo-) reality

CψM =

(

0 −iσ2

−iσ2 0

)(

χ
iσ2χ∗

)

=

(

χ∗
−iσ2χ

)

= ψ∗
M (2.32)

An interesting question is if Majorana was aware of the constraints on the representation in
order to write a linear wave equation and in the affirmative case if this helped him in finding out
the equation for neutral massive particles beyond the infinite component wave equation.

2.2 Other interesting points discussed by Majorana

We have seen that the Majorana equation gives rise to a mass spectrum for particles with
different mass and spin. At that time this was not very interesting, since the spectrum of known
particles was very poor (essentially,p, e, γ and perhapsn). Therefore the idea of Majorana was
rather to get the formalism to find the wave function for a particle with given spin and mass. This
is something that it is possible to obtain from the Majorana wave equation in the non relativistic
limit. In fact he shows that if one takes a solution of the waveequation,ψs,m, with fixed spins,
and massM/(s+1/2), then the wave functions for particles with different spin are suppressed by
orders ofv/c. For instance

ψs−1,m ≈ O

(v
c

)

, ψs−2,m ≈ O

(

v2

c2

)

, · · · (2.33)

The proof goes like the decoupling of the negative energy solutions of the Dirac equation in the
limit v/c→ 0.
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Another point analyzed by Majorana was the existence of space-like solutions. For space-like
momenta one goes to the special frame

pµ → (0,0,0, p̃3), p2 = −
(

p̃3)2
(2.34)

The equation becomes
p̃3Γ3ψ = Mψ (2.35)

It is possible to diagonalize simultaneouslyΓ3 andJ3

Γ3|σ ,m〉 = σ |σ ,m〉, J3|σ ,m〉 = m|σ ,m〉 (2.36)

with σ ≥ 0. The eigenvalue ofΓ3 is connected with the Casimir of the little groupSU(1,1) of the
space-like momentum. Therefore one gets a continuous of space-like solutions:

p2
0−~p2 = −

M2

σ2 < 0 (2.37)

The Majorana equation has also a continuous of light-like solutions, but we will skip their discus-
sion since they do not appear in the paper by Majorana.

Majorana wave equation was rediscovered and generalized (often without reference nor to the
original paper neither to the existence of space-like solutions), as for instance in refs. [8, 9] or in
the books by Gel’fand, Minlos and Shapiro [10] and Naimark [11].

3. Why the paper by Majorana was ignored?

I will list here some of the topics that most probably contributed to take this paper out of the
mainstream of research at that time.

We have already discussed the fact that the positron was discovered the same year of the
Majorana equation and, presumably, the paper lost soon its physical interest also to the Majorana’s
eyes.

The Majorana wave equation gives rise to a mass spectrum, whereas at his time only a very
restricted number of particles were known. Therefore this point did not make the theory very
attractive, and Majorana himself did not pay too much attention to it.

Group theory was not yet very popular among physicists. On the contrary Majorana was very
interested in this subject since his graduation time. In fact in his notes a lot of space is dedicated to
group theoretical calculations.

The paper was written in italian and on Il Nuovo Cimento. Thisjournal was not widely read
at that time. Furthermore the Science Abstract did not abstract from Nuovo Cimento until 1946.
On the other hand it was abstracted from Physikalische Berichte and the abstract of the Majorana’s
paper was reviewed there [12]. Unfortunately the abstractor was not an expert on the subject and
the novelties of the paper, as the first treatment of the unitary representations of the Lorentz group,
were not underlined.

In 1939 Wigner [13] solved completely the problem of the unitary representations of the
Poincaré group, i.e. the inhomogeneous Lorentz group. As itis well known physics requires
that the wave function transforms under a UR of the latter group. These are obtained by fixing a

8
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representation of the translation group, that is to say the four-momentum,pµ . Given pµ one has
to choose a UR of the corresponding little group (SU(2), SU(1,1) or E2 according to a time-like,
space-like or light-like momentum). This means that it is not mandatory to make use of UR’s of
the Lorentz group. Indeed in the Dirac representation only the angular momentum part is unitary,
whereas the boost transformations are not. In the 30’s (and even later), before Wigner’s contribu-
tion, the situation was rather confused. This has lead Streater [14], commenting his own article
[15] about the problems of the infinite component wave equations to the following considerations
about the Dirac equation:

I conjecture that Dirac had the mistaken belief that his (Dirac) equation did not give rise to a
unitary representation of the inhomogeneous Lorentz group(the Poincaré group), because the4×4
matrices appearing in it were not unitary. He may have realised the great importance of unitary
representations after Wigner’s book, Group Theory with applications to atomic spectroscopy. It
might be that the fear that his equation were badly wrong urged Dirac to invent, in about 1945,
single-handedly, some irreducible unitary representations of the Lorentz group, a task thought to
be too hard for mathematicians at the time. If so, it was all tono avail, as the unitarity of the
representation (of the Poincaré group, as opposed to the Lorentz group acting on the spinors)
given by the original Dirac equation was shown by Wigner (1939) and by Bargmann and Wigner
(1947).

We have already noticed that the Majorana wave equation was later rediscovered, often with-
out any reference to the original paper. However in 1966, Fradkin, after a suggestion by Amaldi
published a paper in english [5] commenting the Majorana’s paper. In fact at that time two lines of
research pointed toward infinite component wave equations.These two topics were:

• Dynamical groups.

• The Gell-Mann’s program of saturating the algebra of currents at p = ∞ in terms of single
particle states.

I will discuss the reasons for this renewal of interest in thenext Section. I should also mention
that the possibility of getting a mass spectrum was rather interesting from the point of view of the
Regge theory.

4. The new interest in the 60’s for the infinite component waveequations

4.1 Dynamical groups

In the 60’s the main roads to strong interactions were the analytical S-matrix and group theory.
A very important result obtained by group theory was the discovery of the symmetrySU(3) as a
classification group for hadrons and its unification with therotation group leading to theSU(6)

symmetry [16, 17, 18]. A justification of the success of this group was the idea that hadrons
were composite objects. In this sense it was natural to try tolearn something from the simplest
known system, the hydrogen atom. The similarity of the problems leading toSU(6) for hadrons
and toO(4) for the hydrogen atom, unifying the rotation group with an internal symmetry (SU(3)

for hadrons and the transformations generated by the Runge-Lenz vector for the H-atom), was
discussed in ref. [19]. In 1967, Barut and Kleinert [20] and Fronsdal [21] found that it was possible

9
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to enlarge the symmetry groupO(4) of the H-atom to a dynamical groupO(4,2) which included,
among its generators, the electric dipole operator. The name of this approach, "dynamical groups"
was due to the hope to be able to describe the interactions as generators of a group, as it happens for
the electromagnetic interaction in the H-atom. It is interesting that the previous authors were able to
prove that the Schrödinger equation for the hydrogen, taking also into account the electromagnetic
interaction, can be rewritten in the form of a non-relativistic infinite component wave equation of
the Majorana type. The connection between composite systems and UR’s of the Lorentz group
was already known by Dirac [22] (see also the Streater’s comment [14]) who discussed the UR of
this group in terms of continuous variables (instead of using a discrete basis as in the Majorana’s
approach). Eventually this idea of Dirac was the basis of thebilocal field theory introduced by
Yukawa [23, 24]. On the basis of these considerations several authors discussed a series of infinite
component relativistic wave equations [25, 26, 27]. However all these equations showed a number
of diseaeses as:

• Presence of redundant solutions, as the space-like ones.

• Typically these equations violate the CPT theorem (as for the Majorana case where no nega-
tive energy solutions are present).

• The spin-statistics theorem does not generally hold [28, 29, 15].

As a consequence of these problems the program of dynamical groups died very rapidly.

4.2 Current algebra

Let me consider the matrix elements of a vector current (to fixthe ideas I will take currents of
SU(3)⊗SU(3)) in the limit of external momenta going to infinity [30]. To this end let me define

Fi(~q) =

∫

d3~xei~q·~x j0i (~x,0), i ∈ SU(3)⊗SU(3) (4.1)

The matrix elements of this operator atp = ∞ can be written as

lim
p3,p′3→∞

〈~p′,N|Fi(~q)|~p,N〉 = δ 3(~p′ +~q−~p)
(

N′|Ji(p′− p)|N
)

(4.2)

wherep = (p1, p2). In the previous equation the states|N) are fictitious states that, in the case of
single particles, depend only on the quantum numbersN. The algebra of the operatorsJi(p) is

[Ji(p),Jj(p′)] = i f i jkJk(p+ p′), J†
i (p) = Ji(−p) (4.3)

The idea was to look for representations of this algebra in the space of states of single particle [31].
As shown by Coester and Roepstoff [32], in the space of singleparticle states, this algebra has only
infinite dimensional representations.

An obvious representation of this algebra is:

Ji(p) = ∑n
1
2λ (n)

i eip·x(n)
, [x(n)

1 ,x(m)
2 ] = 0

n = 1,2 for mesons, n = 1,2,3 for baryons (4.4)

10
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UnfortunatelyJi arises as a limit of the fourth component of a four-vector operator and therefore
there is a set of complicated conditions that it must satisfy, the so called angular conditions [33].
This can be easily understood considering the matrix element

〈~p′,N′| jµ |~p,N〉, with j ′ = 0, j ≥ 1 (4.5)

It depends on 4 invariant form factors whereas, without requiring any other condition,
(

N′|J(p)|N
)

depends on 2j + 1 form factors. As I said the angular conditions are very complicated and just to
convince you I will write their infinitesimal form

{

I ,
{

I ,
{

I ,Ji(p)
}}}

=
1
4

[

M2,
[

M2,
{

I ,Ji(p)
}]]

++
1
2
|p|2

[

M2,
{

I ,Ji(p
}]

+
1
4
|p|4

{

I ,Ji(p)
}

(4.6)

where
{

I ,Ji(p)
}

=
1
2

[

M2,
[

L3,Ji(p)
]]

−
1
2
|p|2

[

L3,Ji(p)
]

+
−

[

p·ML,Ji(p)
]

, L = (L1,L2) (4.7)

Furthermore
[

L3,Ji(p)
]

= ip∧∇pJi(p), ∇p =

(

∂
∂ p1

,
∂

∂ p2

)

(4.8)

When all the particles have the same mass,M, the exponential solution (see eq. (4.4)) satisfies all
these conditions with a position operator given by

(x1,x2) =
1
M

(F1,F2) =
1
M

(N1 +J2,N2−J1) (4.9)

where(F1,F2) are theE2 generators (the little group of light-like momenta). Starting from the
degenerate case it is possible to find an approximate solution through a perturbative expansion in
the splitting mass term [34, 35].

It is easy to see that one can avoid the problem of solving the angular conditions by using an
appropriate infinite component wave equation. This is done by the following steps:

• Introduce a wave function,ψ(x) transforming according to some UR of the Lorentz group
with an appropriate spin content.

• Write an invariant wave equation with the desired mass spectrum:

D(x)ψ(x) = 0 (4.10)

However notice that the mass squared should not increase more than the angular momentum
as shown in ref. [36] (an equation with a linear mass spectrumwas proposed in [37]).

• Require that the wave equation is invariant under a specifiedinternal symmetry group.

Using the last requirement one can construct an algebra of conserved currents satisfying automati-
cally current algebra as a consequence of the canonical commutation relations among the fields.

Of course there are problems very similar to the ones listed for the case of dynamical groups,
but the real problem here (and also in the other case) is the presence of the space-like solutions.
Before discussing further this point I want to stress that, immediately after the formulation of
the program of saturating the current algebra, a No-Go theorem was formulated by Grodsky and
Streater [38]. These authors made the following assumptions:
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1. existence of covariant wave functions,

2. reasonable mass spectrum: only time-like solutions withfinite degeneracy on each mass
shell,

3. the representation of the wave function should contain atleast one finite-dimensional repre-
sentation of the Lorentz group and a four-vector operator should exist,

4. the solutions of the wave equation form a complete set,

and proved that each mass-shell must be infinitely degenerate. Therefore the set of solutions satis-
fying the previous assumptions is void. On the other hand thetheorem does not hold if the wave
equation has space-like solutions. There could be a way out if the space-like solutions would
decouple from the time-like ones, or said in other words, if the space-like solutions would not con-
tribute to the completeness relation. It is possible to showthat in these theories the decoupling of
the space-like solutions is related to the possibility of proving the CPT theorem (see the discussion
in ref. [39]). We shall see, in the next Section, that it is notpossible to prove the CPT theorem for
UR’s and therefore the decoupling of space-like solutions cannot occur.

5. The CPT theorem

Consider a wave equation of the Dirac or Majorana type. The wave operator will be CPT
invariant if it possible to define the following operation

pµ →−pµ , Γµ →−Γµ (5.1)

The transformation ofΓµ can be obtained through a rotation ofπ along the third axis followed by
a boost along the same direction by an imaginary boost parameter ξ = iπ:

R3(π)Γ1,2R3(π)−1 = −Γ1,2, B3(iπ)Γ0,3B3(iπ)−1 = −Γ0,3 (5.2)

In the case of the Dirac equation:

B3(iπ)R3(π) = (γ0γ3)(γ1γ2) = γ0γ1γ2γ3 ≈ γ5 (5.3)

It should be clear that in the case of Majorana such an operation cannot exist sinceΓ0 is positive
definite and the equation has not negative energy solutions.The reason why the operation does
not exist is that for all the irreducible UR’s of the Lorentz group the operatorB3(ξ ) has a pole
at ξ = iπ. The same happens for all the irreducible infinite dimensional represntations where the
infinitesimal boost generator,N3, is a normal operator. As a consequence of this pole, the standard
derivation of the CPT theorem, as for instance in the Streater and Wightman book [40] based on the
analytical continuation of the Lorentz group, does not hold. However, for all the finite dimensional
representations of the Lorentz group, the operatorB3(iπ) exists and the CPT theorem is valid. It
turns out that also the spin-statistics theorem is based on the existence of such an operator (B3(iπ))
[40]. Therefore also this theorem cannot be proved in these theories. Of course the possibility of
arranging the theory in such a way that CPT and spin-statistics are satisfied is not excluded.
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To stress the previous point let me notice that, also if the wave equation has negative energy
solutions, the CPT theorem can be violated. Consider, for instance, the following wave equation
[41]:

(

pµγµ −M−
1
2

σ µν [Γµ ,Γν ]

)

ψ = 0 (5.4)

with ψ transforming as the direct product of the representations Dirac⊗Majorana. The existence
of negative energy solutions is guaranteed by the CPT transformation

pµ →−pµ , γµ →−γµ (5.5)

Notice that under this transformationΓµ → Γµ . Consider now a vector fieldφ µ with definite
properties of transformations under the the previous CPT operation. We may construct the two
local couplings:

ψ̄γµψφ µ , ψ̄Γµψφ µ (5.6)

Clearly one of these two couplings is not CPT invariant.

6. Conclusions

Nowdays the UR’s of the Lorentz group do not seem to have interesting physical applications
(however, see the attempts reviewed in [42]). However, in the paper that we have reviewed here,
Majorana shows all his mathematical strength and ingenuity. There are several interesting points
raised up by this paper. One is the question of the choice of representations made by Majorana.
They enjoy many properties, they are the only irreducible UR’s for which it is possible to define
a four-vector operator in the sense specified in Section 2. Furthermore they are parity invariant.
These properties can be easily seen by means of the group theoretical analysis developed here,
so the question is if Majorana had these notions, or he arrived to these representations by simple
chance. Considering that applying the same considerationsit is easy to understand also the Ma-
jorana formulation of the massive neutral particle it seemsmore incredible that all this derived by
casual circumstances.

Also, quite interestingly, the work of Majorana shows clearly that the CPT theorem can be
violated in a local relativistic theory. In fact, relativity and locality are not enough to ensure the
validity of this theorem. A further hypothesis about the nature of the representations of the Lorentz
group is necessary. In particular the CPT theorem is valid for any finite dimensional representation.
Therefore the only way to get a reasonable theory for a mass spectrum must involve necessarily
finite dimensional representations (unless to introduce space-like solutions, violation of CPT and/
or lack of the spin-statistics connection). This happens instring theory which involves an infinite
number of finite dimensional representations. It is curiousthat in the last case there are, in prin-
ciple, problems with the positivity of the states. As well known this problem can be avoided by
choosing a particular value for the space-time dimensions.On the contrary, in the case of unitary
representations this problem does not arise, the metrics inthe space of the states is positive definite,
but of course, as we have seen, the theory has many other difficulties.
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