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I am privileged to be in this interesting place honoring Ettore Majorana. Of course I have had
no personal contact with him — he disappeared before I appeared. However, it is surprising, that
I did not encounter his name nor his achievements during my physics education. He is hardly
mentioned in the usual textbooks, at least in the American ones. This is a great loss! To me it
was a special loss for the following reason. When I was preparing with Hans Bethe our quantum
mechanics textbook, I became fascinated by the Thomas-Fermi theory, and I strived to give a
complete discussion in our text. But at that time I knew nothing about Majorana’s work in this
area, and so could not include it. Again, when we were writing the chapters on Dirac theory, I
wondered why only charged fermions are considered. The resolution of my puzzlement lay in the
Majorana representation, about which I learned only later, principally through Julian Schwinger’s
writings. Schwinger apparently appreciated the Majorana approach and in his discussions of
Dirac theory, the charge carrying fermion field is usually presented as the complex superposition
of two real fields, in complete analogy to the description of charged boson fields. Another con-
nection between Majorana and Schwinger can be noted. The last topic that Schwinger researched
concerned corrections to the Thomas-Fermi model.

Schwinger was also interested in the problem of mass generation, a topic which these days is

linked to Majorana’s name. I shall use this point of contact between the two scientists to re-

view Schwinger’s mass generation mechanism [1], to expose its topological underpinings and to

present an interesting generalization [2]. Majorana deconstructed the complex Dirac equation

into its real components. Here I deconstruct Schwinger’s mass generation into its topological

ingredients. I think that Majorana would have liked these results.
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1. Schwinger Model Resumé

In the Schwinger model, an Abelian vector potential Aµ interacts with a vector current Jµ

constructed from massless Dirac fields ψ . The Lagrange density is gauge invariant and reads

L = −1
4

FµνFµν + iψ̄γµ(∂µ + ieAµ)ψ , Fµν ≡ ∂µAν − ∂νAµ , (1.1)

LI = −eJ µAµ , J µ = ψ̄γµψ . (1.2)

The model is defined on an unphysical 2-dimensional space-time, where the Dirac matrices are
2 + 2 and the Dirac spinor ψ possesses tow components. The traditional solution of the model
proceeds by functionally integrating the Dirac fields, giving an effective action.

Ie f f (A) = −1
4

∫
FµνFµν − i ln det[γµ (∂µ + ieAµ)] (1.3)

The functional determinant can be computed because the only non vanishing Feynman diagram is
the vacuum polarization graph. (This is a special feature of two dimensions.)

Figure 1: Vacuum polarization graph generates the polarization operator Π µν(p) ∝ (gµν − pµ pν/p2).

This generates the polarization tensor Πµν(p) ∝ (gµν − pµ pν/p2). The coefficient of gµν is
evaluation dependent (the diagram is superficially divergent), but it becomes fixed by the gauge
invariance requirement that the vector current correlator (whose proper part is Πµν ) be transverse.
The effective action

Ie f f (A) =
∫ [
− 1

4
FµνFµν +

e2

2π
Aµ(gµν − ∂ µ∂ν

∂ 2 )Aν

]
, (1.4)

exhibits the generated mass, m2 = e2

π . Thus Schwinger showed that a gauge invariant theory may
nevertheless possess a mass gap — a result known to superconductivity experts, as emphasized by
Philip Anderson. Although usually one says that the “photon” acquires a mass, in two dimensions
the “photon” field Aµ can be decomposed as Aµ = ∂µθ + εµν∂νη ′. The gauge part decouples;
only the pseudoscalar η′ remains. So one could just as well say that a pseudoscalar excitation
acquires the mass.

It is important to appreciate that the axial vector current J5
α = ψ̄ γαγ5ψ , which is conserved

with massless fermions with unquantized ψ , acquires an anomalous divergence upon quantization.
This is immediately seen when the 2-dimensional duality relation between axial and vector currents
is used.

J 5
α = εαµJ µ (1.5)

Formula (1.5) is a consequence of 2-dimensional geometry: when Jµ is a vector, J 5
α defined by

(1.5) is an axial vector. More explicitly, (1.5) is seen in a 2-dimensional gamma matrix identity.

γαγ
5 = εαµγ

µ (1.6)
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Therefore, the correlator 5Π
ν
α of J 5

α with J ν can be simply obtained from Πµν as 5Π ν
α =

εαµΠµν . Moreover, once a transverse form for Πµν is fixed by gauge invariance, 5Π ν
α fails to be

transverse in the α index; the divergence of the axial vector current is anomalous.

∂αJ 5
α = − e

2π
εµνFµν =

e
π

F (1.7)

In the second equality we have introduced the (pseudo) scalar F , dual in two dimensions to the anti
symmetric Fµν ≡ εµνF

The anomaly provides an immediate derivation of the mass [3]. We begin with the gauge field
equation of motion that follows from (1.1).

∂µFµν = eJ ν (1.8)

In terms of the dual field strength F this reads

εµν∂µF = eJ ν . (1.9)

The ε symbol may be transferred to the right side and Jν becomes replaced by its dual J5
α .

∂αF = −eJ 5
α (1.10)

A further divergence gives the d’Alembertian on the left and the anomaly (1.7) on the right.

∂ 2F +
e2

π
F = 0 (1.11)

This demonstrates that the pseudoscalar F acquires a mass, m2 = e2

π .

2. Topological Entities in the Schwinger Model

The 2-dimensional anomaly is proportional to −F = 1
2ε

µνFµν , which is recognized as the
2-dimensional Chern-Pontryagin density P2.

P2 =
1
2
εµνFµν . (2.1)

Furthermore, the gauge potential Aµ is dual to the Chern-Simons current Cα
2 ,

C α
2 ≡ εαµAµ , (2.2)

whose divergence forms the Chern-Pontryagin density [4].

∂αC α
2 = εαµ∂αAµ =

1
2
εαµFαµ = P2 (2.3)

The bosonic portion of the Lagrange density for the Schwinger model may be written in terms
of these topological entities.

L2 = −1
4

FµνFµν − eJ µAµ =
1
2

F2 − eAµεµαJ 5
α (2.4)

=
1
2

P2
2 + eC α

2 J 5
α
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Moreover, since Cα
2 and Aµ are linearly related, it makes no difference which one is the fundamen-

tal variable. Thus varying Cα
2 in (2.4) gives (1.10) directly as the equation of motion.

−∂αP2 + eJ 5
α = 0 (2.5)

A further divergence and the anomaly equation (1.7) reproduce (1.11), since P2 = −F .
It is this last, topological reformulation of the Schwinger model that we shall take to four

dimensions. However, we must still address an important point that will arise in the 4-dimensional
theory. Observe that the equation of motion (1.10) or (2.5) entails an integrability condition: Since
the (axial) vector J 5

α is set equal to a gradient of (the pseudoscalar) P2, it must be that the curl
of the axial vector vanishes. Equivalently, the dual of the axial vector must be divergence-free;
viz. the vector current must be conserved. Of course the same integrability condition is seen in the
original vector formulation of the model, with equation of motion (1.8), which entails conservation
of the vector current (dual to the axial vector current).

But let us suppose that we have dynamical information only about the topological variables,
and do not know whether the current dual to the axial vector current is conserved. (This is the
situation that we shall meet in four dimensions.) Then we must reformulate our theory in such a
way that the integrability condition is avoided.

This reformulation in two dimensions proceeds by introducing two Stückelberg fields p and q
into L2.

L ′
2 =

1
2
P2

2 + e(C α
2 + εαβ∂βp)(J 5

α + εαγ∂ γq) (2.6)

Upon varying Cα
2 , (2.5) becomes replaced by

−∂αP2 + e(J 5
α + εαγ∂

γq) = 0. (2.7)

Additionally, variation of p and q give, respectively

∂αε
αβJ 5

β + ∂ 2q = 0, (2.8)

∂αεαβC β
2 + ∂ 2p = 0. (2.9)

The integrability condition on (2.7) demands that the curl of J5
α + εαγ∂ γq vanish, but this

is secured by (2.8). This equation determines a non-trivial value for q if the curl of J5
α is non-

vanishing, while (2.9) fixes an innocuous value for p. Finally we observe that the divergence of
(2.7) annihilates the q - dependent term, leaving in the end the previous equation (1.11).

We may understand the role of the Stückelberg fields by reverting to the original vector vari-
ables. Then the interaction part of L ′2 in (2.6) reads

L ′
2I = −e(J µ + ∂ µq)(Aµ + ∂µp), (2.10)

and (2.8), (2.9) have respective counterparts in

∂µJ µ + ∂ 2q = 0, (2.11)

∂ µAµ + ∂ 2p = 0. (2.12)
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Eliminating p and q from (2.10) with the help of (2.11), (2.12) leaves

L ′
2I = −eJ µ

(
δν
µ −

∂µ∂ν

∂ 2

)
Aν . (2.13)

This shows that the Stückelberg fields ensure that the interaction occurs only between trans-
verse components of J µ and Aµ . For yet another perspective on the role of the Stückelberg fields,
note that −e

∫
J µAµ is not gauge invariant ( Aµ → Aµ + ∂µθ ) when J µ is not conserved. How-

ever, the combination Aµ + ∂µ p is always gauge invariant because p can transform as p -θ . Finally
observe that eliminating the Stückelberg fields in (2.5) with the help of (2.8) and the anomaly equa-
tion (1.7) leaves

∂µ

(
P2 +

e2/π
∂ 2 P2

)
= 0 (2.14)

This is equivalent to (2.5), but carries no integrability condition. Thus we see that the Stückelberg
modification overcomes difficulties, which arise when the current dual to the axial vector is not
conserved.

3. 4-Dimensional Model with Topological Mass Generation

For a 4-dimensional generalization of the previous, we adopt the formulation of the 2-dimensional
model, presented in Section 2 in terms of the Chern-Pontryagin density and Chern-Simons current,
now promoted to four dimensions, P4 and C α

4 respectively, with the latter coupling to an axial
vector current J 5

α whose divergence is anomalous. The topological entities are constructed from
gauge potentials, which we take to be Abelian or non-Abelian; in either case P4 and C α

4 remain
gauge singlets.

P4 ≡ 1
2
εαβµνFa

αβFa
µν = ∗Fµν aFa

µν (3.1)

Fa
µν ≡ ∂µAa

ν −∂νAa
µ + f abcAb

µAc
ν ,

∗Fαβ ≡ 1
2
εαβµνFµν

C α
4 ≡ 2εαµνω(Aa

µ∂νAa
ω +

1
3

f abcAa
µAb

νAc
ω) (3.2)

∂αC α
4 = P4 (3.3)

Here f abc are the structure constants of the appropriate Lie algebra.
Unlike in the 2-dimansional case, the Chern-Simons current is not linear in the gauge vector

potential; nevertheless we remain with the potential as the fundamental dynamical variable (see
however below). The variation of the Chern-Simons current reads

δC α
4 = 4∗Fαµ aδAa

µ − 2εανωµ∂ν(Aa
ωδAa

µ). (3.4)

A further difference from the Schwinger model is that there is no reason to suppose that the dual to
the 4-dimensional axial vector current is conserved. On the level of 4-dimensional gamma matrices,
the duality relation is

εµνωαγαγ
5 = gµνγω − gµωγν + gνωγµ − γµγνγω . (3.5)
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It is improbable that fermion dynamics (here unspecified) would leave conserved the current dual
to the axial vector current. But this is not an obstacle to our construction, because we can employ
the Stückelberg formalism, as explained in the previous Section, to overcome the difficulty.

Thus the Lagrange density that we adopt is

L ′
4 =

1
2
P2

4 + Λ2(C α
4 + ∂βpαβ )(J 5

α + ∂ γqαγ). (3.6)

The Stückelberg fields pαβ and qαγ are anti symmetric in their indices; Λ2 carries mass-squared
dimension; the axial vector current possesses an anomalous divergence.

∂αJ 5
α = −N ∗Fµν aFa

µν = −NP4 (3.7)

N is a numerical coupling constant, taken positive.
Variation of the L ′

4 action with respect to Aa
µ gives , with the help of (3.4),

∫ (
−∂αP4 + Λ2(J 5

α + ∂ γqαγ)
)
δC α

4 = (3.8)

∫ [
4
(
−∂αP4 + Λ2(J 5

α + ∂ γqαγ)
)
∗Fαµ a −2εανωµAa

ν∂ω
(
−∂αP4 + Λ2(J 5

α + ∂ γqαγ)
)]

δAa
µ ,

(3.9)
so that the equation of motion demands

2
(
−∂αP4 + Λ2(J 5

α + ∂ γqαγ)
)
∗Fαµ a − εαµνωAa

ν∂ω Λ2(J 5
α + ∂ γqαγ) = 0. (3.10)

Variation of the two Stückelberg fields yields the equations

∂α(J 5
β + ∂ γqβγ) − α ←→ β = 0, (3.11)

∂α(C β
4 + ∂γpβγ) − α ←→ β = 0. (3.12)

The first of these allows setting to zero the second member of (3.10), while in the first member of
that equation we may strip away ∗Fαµ a with the help of the identity

∗FαµFµν = −1
4
δα
ν P4. (3.13)

Consequently (provided P4 �= 0) we are left with

−∂αP4 + Λ2(J 5
α + ∂ γqαγ) = 0. (3.14)

(Even though we varied Aa
µ , which enters non-lineary into Cα

4 , the final equation (3.14) also results
by simply varying the composite Cα

4 in (3.6). This demonstrates the robustness of the derivation.)
The integrability condition on this equation is satisfied by virtue of (3.11). Taking another

divergence of (3.14) annihilates the Stückelberg field because of its anti symmetry, while (3.7)
provides the divergence for J5

α . Thus we are left with

∂ 2P4 + NΛ2 P4 = 0. (3.15)

6
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This shows that the pseudoscalar P4 has acquired the mass, m2 = NΛ2.
By taking the divergence of (3.11), we find from (3.7)

J 5
β + ∂ γqβγ = − N

∂ 2 ∂β P4. (3.16)

Inserting this in (3.14) yields

∂α

(
P4 +

NΛ2

∂ 2 P4

)
= 0, (3.17)

which is equivalent to (3.15) , but does not entail integrability conditions.

4. Conclusion

While the 4-dimensional transposition of the 2-dimensional Schwinger model succeeds in gen-
erating a mass for a pseudoscalar, just as in the 2-dimensional case, there are various shortcomings.
To these we now call attention.

The principal defect is the absence of dynamics that should produce the anomaly for the axial
vector current. In the Schwinger model, the same dynamics and the same degrees of freedom that
generate the mass are also responsible for the anomaly (1.7). In the 4-dimensional theory we must
posit the anomaly (3.7) separately from the mass generating dynamics. Moreover, our final result
is that P4 propagates as a free massive field. Additional dynamics must be specified to describe
interactions.

A related question concerns the role in physical theory for our Lagrangian (3.6). Since it
involves dimension eight (P4) and dimension six ( Cα

4 J 5
α ) operators, it should be viewed as an

effective Lagrangian. In this connection, observe that the Born-Infeld action and the radiatively
induced Euler-Heisenberg action both contain the Abelian (∗FµνFµν)2 quantity in a weak-field
expansion [also accompanied by an (FµνFµν)2 term].

The kinetic portion of the Lagrangian in the Weyl (A 0 = 0 ) gauge involves ȦiȦ jBiB j where Bi

is the magnetic field. Canonical analysis and quantization with such a kinetic term faces difficulties
because the “metric” on Ai space, viz. BiB j, is singular. But this poses no problem if our Lagrangian
is used for phenomenological purposes, with the semi-classical addition of quantum effects through
the chiral anomaly.

The U(1) character of our anomalous current and the presence in our theory of the Chern-
Pontryagin quantity suggest that here we are dealing with the problems of the unwanted axial U(1)
symmetry and the mass of the η′ meson. Conventionally these issues are resolved by instantons
[5]. Here we offer a phenomenological description. We relate the axial vector current to the η ′

field,
J 5

α = Z∂αη ′/Λ (4.1)

(Z is a normalization) and add an η′ kinetic term to (3.6).

Lη ′ =
1
2
P2

4 + ZΛC α
4 ∂αη ′ +

1
2
∂αη ′∂αη ′ (4.2)

[We dispense with the Stückelberg fields because the dual of the current in (5.1) is conserved.]
Observe that the η′ field enjoys a constant shift symmetry, as befits the quadratic portion of a

7
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Goldstone field Lagrangian. The equations that follow from varying Aa
µ and η ′ respectively, are

∂α(P4 − ZΛη ′)∗Fαµ a = 0 (4.3)

∂ 2η ′ + ZΛP4 = 0 (4.4)

Together the two imply

∂ 2P4 + Z2Λ2P4 = 0. (4.5)

As before, a mass is generated.
This may also be seen by rewriting the Lagrangian in (4.2), apart from a total derivative, as

Lη ′ =
1
2
P2

4 − ZΛP4η
′ +

1
2
∂αη

′∂αη ′ (4.6)

=
1
2
(P4 − ZΛη ′)2 +

1
2
∂αη

′∂αη ′ − 1
2

Z2Λ2η ′2.

With ZΛη ′ absorbed by P4, we see that η ′ decouples, but carries a mass [6].
In the case of 4-dimensional QCD with massless quark flavor(s), equation (4.5) can be obtained

without any assumptions about the dependence of the effective Lagrangian on the η′ meson. We
only need to assume that the effective Lagrangian contains the first P 2

4 term in (4.6). The analog
of the second term is automatically generated from the anomaly diagram (Fig. 2) that correlates
C α

4 and J 5
α .

Figure 2: Anomaly diagram that correlates C α
4 and J 5

β

The diagram generates the following operator

Λ2C α
4
∂α∂β

∂ 2 J 5
β , (4.7)

where Λ2 arises as a momentum cut off. This expression is also what one obtains from (3.6) after
eliminating the Stückelberg fields pαβ and qαγ through their equations of motion (4.10), (4.11).
Thus massless quark dynamics due to the anomaly substitute the effect of the Stückelberg fields.
Variation with respect to Aa

µ yields the analog of equation (3.14).

−∂αP4 + Λ2 ∂α
∂ 2 ∂

βJ 5
β = 0 (4.8)

Using the anomalous divergence relation (3.7), we arrive to the equation (3.17), which is equivalent
to (4.5). Because P4 acquires a mass, its expectation value in the QCD vacuum must vanish. This
explains why QCD solves both U(1) and the strong CP problems in the zero quark mass limit [7].
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Similar effects should be present in all even dimensions, but the singularity structure and the
required dimensional parameter (analog of the 2- and 4-dimensional e and Λ) will change.

In conclusion we observe that although both the 2- and 4-dimensional models are formulated
in terms of topological entities (P,C α ), they are not topological theories. Examining (3.6), (4.6)
we see that the Chern-Simons/axial vector interaction term (CαJ 5

α ) is a geometric scalar density
and can be integrated over a manifold in a diffeomrphism invariant way, without introducing a
metric tensor. However, for the kinetic term (P 2) to be a scalar density it must be divided by√

g. (In this discussion we ignore the Stückelberg terms.) Without this metric factor the theory is
not invariant against all diffeomorphisms, but only against the “volume” preserving ones with unit
Jacobian.
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