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The gluon propagator from large asymmetric lattices
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1. Introduction and motivation

The investigation of the Landau-gauge gluon propagator

Dab
µν(q) = δ ab

(

δµν −
qµqν

q2

)

D(q2) (1.1)

in lattice QCD dates back to more than 20 years. Despite the efforts made by a number of authors,
there are questions which remain to be answered. For large momenta, let us sayq > 2 GeV, the
results from different groups provide a consistent pictureof the propagator and agree well with
calculations performed using other non-perturbative techniques. On the other hand, the infrared
limit is still an open issue and has been a field of intense research in the last years (see the con-
tributions to this conference,e.g. [1], and references therein). From the point of view of lattice
simulations, the questions to be answered yet are numerous and sometimes are even not easy to
handle with. For example, it is still under debate how to dealwith the Gribov ambiguity in lat-
tice simulations, and how close present lattice data come toLandau-gauge gluodynamics in the
continuum and infinite-volume limit.

In order to access the infrared limit of the gluon propagator, two of us (O.O. and P.J.S.) recently
proposed and explored the use of large asymmetric lattices [2, 3, 4], i.e. L3×T with T ≫ L. The
price of relying on such kind of lattices are the control, or the lack of it, of additional finite-
volume effects coming from a breaking of theZ4 symmetry, a remnant of theO(4) continuum
symmetry on a symmetric hypercubic lattice. When previous studies on symmetric lattices have
shown strong finite-volume effects in the infrared region [5], the situation is more dramatic for
asymmetric lattices. For example, there the gluon dressingfunctionZ(q2) = q2D(q2) computed at
equal time-like and spatial momenta are not necessarily compatible within pure statistical errors in
the low-momentum region.

On the other hand, the access to very low momenta is much more computationally intensive in
simulations on symmetric lattices compared to those on asymmetric ones. Therefore, if somehow
the asymmetry-induced finite-volume effects were brought under control, data at much lower mo-
menta than currently available could be obtained. Indeed, then still the infinite volume limit has to
be taken, but in a situation where more data were available inthe infrared momentum region.

Having now access to a considerably larger spatial volume for the asymmetric case, in this
study we report on some first results obtained comparing dataon symmetric and asymmetric lat-
tices, namely 163 × 256, 183 × 256, 323 × 200 and 324. In particular, we look for regions in the
lattice momentum space where the differences between time-like and spatial momenta disappear
and where not. For our simulations we use the standard Wilsongauge action withβ = 6.0 fixed.
This value corresponds to an inverse lattice spacing of about a−1 = 1.94 GeV. To relate our data at
the different lattice momenta to their continuum counterparts we use

qµ =
2
a

sin

(

πnµ

Lµ

)

, nµ = 0, 1, . . . ,Lµ −1, (1.2)

whereLµ is the lattice extent in directionµ . Definitions and details on the gauge fixing are given
in [7] and for the 323 × 200 data in [8]. In the following, whenever possible, aZ3 average over
equivalent momenta is performed.
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Figure 1: The gluon dressing function on a 323×200 lattice. The different momentum cuts are discussed
in the text.

2. Asymmetric lattice: 323×200

The gluon propagator and dressing function were computed for 39 configurations using a
323 × 200 lattice. The data shows discretization effects similarto those seen in the symmetric
lattices. Indeed, it is well-known that for momenta aboveq> 1 GeV the propagator is not a simple
function ofq2 = q2

µ alone. The traditional approach is to apply momenta cuts [6]which reduce the
dependence of the propagator and the dressing function on otherZ4 (in our caseZ3) invariants to a
unique curve. This is better seen in the gluon dressing function. In order to illustrate this effect, in
Fig. 1 we plot the gluon dressing function for different choices of momenta (purely time-like and
different cuts of spatial momenta).

The plot shows that, within our limited statistics, there isvery good agreement between the
dressing functions computed using purely spatial on-axis and purely temporal momenta. The figure
does not include the dressing function for all purely spatial momenta. However, in what concerns
the purely spatial momenta, the gluon dressing function foron-axis momenta evolves typically
along the lower edge of the spatial (including off-axis) momentum data. The diagonal choice of
momenta,i.e. the cylindrical cut [6] wherenµ ≈ ±nν (see the left plot in Fig. 1) picks up an
unique propagator which is slightly above the propagator for the on-axis choice for momenta atq
larger than∼ 1 GeV. Note that this “democratic” choice of momenta has beensuccessfully used to
suppress discretization effects such that data from different volumes and lattice spacings match at
larger momenta.

In the right plot of Fig. 1 we also show two naive generalizations to the asymmetric case of
the on-axis case and of a “democratic” choice of momenta (thecylinder cut), labelled as(111X)

and (1116) cuts. The former includes momenta only of typenµ = (±1,±1,±1,±nt) with nt =

0,1, . . . ,T/2 (softening of on-axis momenta), while the latter includesmomenta defined around the
directionnµ = (±n,±n,±n,±6nt ) with n= 0,1, . . . ,L−1 andnt = n,n±1,n±2. This direction is
close to the diagonal in the elongated volume (remember thatT/L = 6.25). Note that the(111X)

cut reproduces the results of the symmetric lattice for the on-axis choice of momenta, while the
(1116) cut follows the symmetric lattice data for the cylindrical and conical cuts. Given that the
cylindrical and conical cuts seem to reduce the finite-volume effects for momenta above 1 GeV,
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Figure 2: The gluon dressing function for a 324 lattice is shown on the left hand side. The right figure
compares the same data with those on a 323×200 lattice. Different cuts have been applied to the data.

Fig. 1 suggests that for the asymmetric lattices one should use the(1116) cut, or a variant of it, for
that momentum region.

3. Symmetric lattice: 324

The gluon dressing functionZ(q2) = q2D(q2), computed for an ensemble of 50 gauge config-
urations on a 324 lattice, is given in the left plot of Fig. 2 applying various cuts. The lattice data
shows similar discretization effects as for the asymmetriclattice. This is illustrated in the right plot
of the same figure. There, data for the two lattices 324 and 323×200 are shown for two different
momentum cuts at larger momenta and good agreement is found.Moreover, within our limited
statistics, the cuts produce similar effects for both lattices where the on-axis data lie in both cases
systematically below cylinder-cut data forq > 2 GeV.

In Fig. 3 the lattice gluon dressing function for a 323×200 and a 324 lattice are compared for
momenta below 2 GeV. Again, two different cuts (on-axis and cylindrical) are considered. We find
that in this momentum range the dressing functionsZ(q2) for the two lattice geometries are in good
agreement, even though we cannot compare at the low-lying momenta. A comparison with data
from larger symmetric lattices is necessary to become more confident in this. At least, the good
matching between 0.5 GeV and 2 GeV is encouraging in what concerns the use of asymmetric
lattices to extract reliable infrared properties in futurelattice simulations.

4. The impact of the spatial volume

Now we discuss the volume dependence of the propagatorD(q 6= 0) as function of the physical
momentumq. In Fig. 4 we compare the gluon propagator on one hand and the dressing function on
the other hand for various asymmetric lattices, for 324 (all atβ = 6.0) and for the continuum Dyson-
Schwinger solution of Ref. [10]. All propagators were renormalized according to the condition

D(q2)
∣

∣

q2=µ2 =
1

µ2 , (4.1)
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Figure 3: The gluon dressing function at low momenta for the 324 and the 323×200 lattices for two different
momenta cuts.
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Figure 4: The gluon propagator (left) and the gluon dressing function(right) for various asymmetric lattices
and for 324 at β = 6.0 . compared with the DSE solution.

with the choiceµ = 3 GeV. For asymmetric lattices, the data is for time-like (on-axis) momenta.
For the symmetric lattice, the plot includes only on-axis momenta. Fig. 4 shows that the two results
become closer as the lattice volume increases.

5. Fitting the IR gluon dressing function

In previous investigations it was verified that the lattice gluon dressing function and the contin-
uum Dyson-Schwinger solution are well described not by a pure power law but by both functions

ZI (q
2) = ω

(

q2

q2 + Λ2

)2κ

, ZII (q
2) = ω

(

q2
)2κ

(q2)2κ +(Λ2)2κ (5.1)
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Lattice qmax κ Λ χ2/d.o. f . # conf

163×256 664 0.5090+19
−20 409+4

−4 0.71 155

183×256 711 0.5320+28
−30 389+5

−6 1.14 150

323×200 728 0.532+12
−12 465+25

−23 1.28 39

Table 1: Parameters corresponding to a fit of the lattice gluon dressing function according toZI (q2). qmax

andΛ are given in MeV.

Lattice qmax κ Λ χ2/d.o. f . # conf

163×256 664 0.5077+16
−17 409+4

−3 0.69 155

183×256 711 0.5266+29
−21 391+3

−7 1.09 150

323×200 728 0.528+10
−8 464+22

−23 1.16 39

Table 2: Parameters corresponding to a fit of the lattice gluon dressing function according toZII (q2). qmax

andΛ are given in MeV.

for momenta below∼ 700 MeV.
The results of fitting the lattice dressing function for purely temporal momenta withZI andZII

are reported in tables 1 and 2, respectively;qmax is the highest momentum included in the fits. Note
that, the exponentκ agrees within one standard deviation for the two largest volumes. Furthermore,
for these lattices,κ agrees with the estimate of O.O. and P.J.S. [3],κ ∼ 0.53, from using ratios of
propagators to suppress the volume dependence. The ratio method discussed in [3], if applied to
the 323×200 data, estimatesκ = 0.565±0.040 for the infrared exponent.

The results giveκ consistently above 0.5. If this really represents the infrared asymptotics, it
supports a vanishingq→ 0 limit of the gluon propagatorD(q 6= 0). Moreover, one should keep in
mind that the fits to a pure power law provide always aκ < 0.5, with κ increasing with the lattice
volume. It should be noted, however, that so far lattice simulations have always reported a finite
and not vanishing gluon propagator at zero momentum [12].

6. Results and Conclusions

In this work the gluon propagator and dressing function has been analysed for various asym-
metric lattices and a comparison to 324 data has been done. Despite the observed finite-volume
effects, for volumes as large as 323 × 200 the dressing functionZ(q2) for purely temporal mo-
menta agrees well, within the available statistics, with the corresponding function for purely spatial
on-axis momenta.

In what concerns the 323×200 and 324 data, the momentum cuts produce similar results for
the full range of momenta,i.e. the gluon propagator/dressing function for on-axis momenta are
systematically below cone-cut or cylinder-cut data forq > 1 GeV.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
7
)
3
2
3

The gluon propagator from large asymmetric lattices Orlando Oliveira

The behaviour of the lattice infrared gluon dressing functionZ(q2) is well described by the two
ansätzeZI andZII for q< 700MeV. The fits to the data provideκ values which support a vanishing
zero momentum limit of the gluon propagator for all the lattices reported here. The measurement
of the infrared exponentκ for the two larger lattices suggests a valueκ ∼ 0.53, in agreement with
the estimate discussed in [3].
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