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1. Introduction

Interest in the possibility of Lorentz violation has increased significantly over the years, as
it has been realized that effects arising at the Planck scale might give rise to small breakings of
Lorentz symmetry at low energy. These include mechanisms in string theory, field theories in non-
commutative geometry, quantum gravity, effects due to modified dispersion relations, etc. (For
reviews, see [1, 2, 3]). At the same time, a comprehensive phenomenological investigation of
Lorentz violation has been initiated that has led to a number of new high-precision tests of Lorentz
invariance. This was facilitated by development of the Standard-Model Extension (SME) [4, 5],
which provides the most general effective field-theoretical framework incorporating Lorentz and
CPT violation. Using the SME, detailed investigations of Lorentz breaking can be conducted in
the context of high-energy particle physics, gravitational physics, nuclear and atomic physics, and
astrophysics. This on-going effort has pushed experimental bounds on some forms of Lorentz
breaking well beyond levels associated with suppression by the Planck mass. Nonetheless, many
signals remain untested. In addition to these phenomenological investigations, the idea of Lorentz
breaking continues to undergo theoretical scrutiny. In particular, possible effects of Lorentz break-
ing in the context of gravity have begun to be explored, and in certain cases these ideas can lead to
interesting prospects for alternative explanations of such things as dark matter and dark energy.

One of the more elegant ideas for Lorentz violation is that this symmetry might be sponta-
neously broken [6]. Indeed, it was the idea that mechanisms in string field theory might lead to
spontaneous Lorentz violation that helped stimulate much of the current interest in the topic of
Lorentz breaking. Moreover, one of the primary interpretations of the coefficients in the SME is
that they are vacuum expectation values (combined with Yukawa couplings) of tensor fields that
couple to conventional matter at low energy. Thus, one of the products of a comprehensive investi-
gation of Lorentz violation using the SME is a survey for possible signals of spontaneous Lorentz
breaking originating from the Planck scale.

However, as soon as one begins to discuss the idea of spontaneous symmetry breaking, well
known results from particle physics immediately come into play. These include the possible ap-
pearance of massless Nambu-Goldstone (NG) modes, the possibility of a Higgs mechanism, and
the question of whether additional massive modes (analogous to the Higgs boson) can arise.

It is these types of effects that are examined here for the case where it is local Lorentz sym-
metry that is spontaneously broken. Clearly, any processes generating massless or massive modes
can have important implications for phenomenology. This is particularly the case for spontaneous
breaking of Lorentz symmetry in the context of gravity, where the effects of the NG and massive
modes might influence gravitational propagation or alter the form of the static Newtonian potential.
Thus, in addition to looking at the fate of the NG modes in general and the question of whether a
Higgs mechanism can occur, it is important as well to look at the role of the NG and massive modes
in the context of specific models that permit an examination of their effects on gravity. The simplest
example is for the case of a vector field, where such models are known as bumblebee models [6, 7].
It is this type of model that is used here to illustrate the effects of the NG and massive modes. This
is then followed by a more general discussion of phenomenology.

Many of the main results presented here, including background on bumblebee models, are
described in greater detail in [6, 7, 8, 9], as well as in the references cited within these works.
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2. Spontaneous Lorentz Breaking

In special relativity, Lorentz symmetry is a global symmetry consisting of rotations and boosts
However, in curved spacetime, in a gravitational theory, Lorentz symmetry is a local symmetry.
It transforms local vectors and tensors in the tangent plane at each spacetime point. In addition
to being locally Lorentz invariant, a gravitational theory is also invariant under diffeomorphisms.
These transformations act on tensor and vector fields defined on the spacetime manifold. Typically,
it is the diffeomorphism symmetry that is more readily apparent in a gravitational theory, since local
Lorentz symmetry acts only in local frames. However, ultimately both types of transformations
are important, and a complete discussion of Lorentz breaking in gravity theory should include an
examination of its effects on diffeomorphisms as well.

One way to reveal the transformation properties of vectors and tensors under both local Lorentz
transformations and diffeomorphisms is by using a vierbein formalism. The vierbein e a

µ relates
tensor components defined with respect to a local basis, e.g., Tabc (where Latin indices denote
components with respect to a local frame), to those defined with respect to the spacetime coordinate
system, e.g., Tλ µν (where Greek indices label the spacetime frame) . For example, the spacetime
metric and local Minkowski metric are related by

gµν = e a
µ e b

ν ηab. (2.1)

Similarly, for an arbitrary tensor,
Tλ µν = e a

λ
e b

µ e c
ν Tabc. (2.2)

A vierbein formalism also allows spinors to be incorporated into the theory, and it naturally par-
allels gauge theory, with Lorentz symmetry and diffeomorphisms both acting as local symmetry
groups. In a vierbein formalism, the spin connection ω ab

µ enters in covariant derivatives that act on
local tensor components and plays the role of the gauge field for the Lorentz symmetry. In contrast,
the metric excitations act as the gauge fields for the diffeomorphism symmetry. When working with
a vierbein formalism, there are primarily two geometries that can be distinguished. In Riemannian
geometry (with no torsion), the spin connection is nondynamical. It is purely an auxiliary field
that does not propagate. However, in Riemann-Cartan geometry (with nonzero torsion), the spin
connection must be treated as independent degrees of freedom that in principle can propagate.

In considering theories with violation of Lorentz and diffeomorphism symmetry it is important
to distinguish between observer and particle transformations [4]. Under an observer general coor-
dinate or local Lorentz transformation, vectors and tensors remain unchanged, while the coordinate
bases used to define their components transform. In contrast, particle diffeomorphisms and Lorentz
transformations change vectors and tensors, while leaving unchanged the coordinate systems and
basis vectors. In theories with no symmetry breaking, the transformation laws for observer and
particle transformations are inversely related but otherwise are similar in form. However, if the
symmetries are spontaneously broken and fields are divided into vacuum values and excitations,
the transformation laws for these will differ for the observer and particle transformations.

A fundamental premise is that a physical theory should always be observer independent. This
includes even when Lorentz symmetry and diffeomorphisms are either explicitly or spontaneously
broken. In fact, the SME is based on this. It is formulated as a lagrangian-based field theory that

3



P
o
S
(
Q
G
-
P
h
)
0
0
9

Effects of Spontaneous Lorentz Violation in Gravity Robert Bluhm

is fully invariant under observer general coordinate transformations and local Lorentz transforma-
tions.

In a theory with spontaneous breaking of a particle spacetime symmetry, the lagrangian still
remains invariant under the broken symmetry, and the full equations of motion remain covariant.
However, fixed vacuum-valued fields appear that cannot be transformed under the particle trans-
formations. Interaction terms involving these fixed background vacuum fields also appear in the
equations of motion, which by themselves break the particle symmetry. It is the interaction with
these vacuum fields that can lead to physical effects of the broken particle symmetry that can be
tested in experiments.

In a gravitational theory, local Lorentz symmetry is spontaneously broken when a local tensor
field acquires a vacuum expectation value (vev). For example, for the case of a three-component
tensor,

< Tabc >= tabc. (2.3)

The vacuum of the theory then has preferred spacetime directions in the local frames, which spon-
taneously breaks the particle Lorentz symmetry.

Spontaneous Lorentz breaking can be introduced into a theory dynamically by adding a po-
tential term V to the Lagrangian. For example, a potential of the form

V ∼ (Tλ µν gλαgµβ gνγ Tαβγ ± t2)2, (2.4)

consisting of a quadratic function of products of the tensor components Tλ µν , has a minimum when

Tλ µν gλαgµβ gνγ Tαβγ =∓ t2. (2.5)

Note that the sign on the right-hand side depends on the timelike or spacelike nature of the tensor
components. Solutions of Eq. (2.5) span a degenerate space of possible vacuum solutions. Spon-
taneous Lorentz breaking occurs when a particular vacuum value tabc in the local frame is chosen,
satisfying the condition

∓t2 = tabc η
pa

η
qb

η
rc tpqr. (2.6)

Alternatively, a potential with a Lagrange multipler field λ can impose (2.5) directly as a constraint,
which also leads to spontaneous selection of a vacuum value tabc.

3. Nambu-Goldstone Modes

To examine the fate of the NG modes in a theory with spontaneous Lorentz violation, a general
approach can first be followed. Consider a theory with a tensor that has a nonzero vev in a local
Lorentz frame, for example, < Tabc >= tabc. Such a vev spontaneously breaks particle local Lorentz
symmetry. In addition, the vierbein also has a constant or fixed background value. For example, in
a background Minkowski spacetime,

< e a
µ >= δ

a
µ . (3.1)

The spacetime tensor therefore has a vev as well,

< Tλ µν >= tλ µν , (3.2)
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which is obtained when < e a
µ > acts on tabc. This fixed vacuum value for Tλ µνmeans that particle

diffeomorphisms are spontaneously broken. Thus, a first general result is that spontaneous breaking
of local Lorentz symmetry implies spontaneous breaking of diffeomorphisms.

Spontaneous breaking of these symmetries implies that NG modes should appear (in the ab-
sence of a Higgs mechanism). This raises the question of how many NG modes can appear. The
usual rule is that there can be up to as many NG modes as there are broken symmetries. In this
case, maximal symmetry-breaking would yield six broken Lorentz generators and four broken dif-
feomorphisms. Therefore, there can be up to ten NG modes in general.

A related question asks where the ten NG modes reside. In general, the answer depends on
the choices of gauge. However, one natural choice is to put all ten NG modes into the vierbein,
as a simple counting argument shows is possible. The vierbein e a

µ has 16 components. With no
spontaneous Lorentz breaking, the six Lorentz and four diffeomorphism degrees of freedom can
be used to reduce the vierbein down to six independent degrees of freedom. (Note that a general
gravitational theory can have six propagating metric modes; however, general relativity is special
in that there are only two). In contrast, in a theory with spontaneous Lorentz breaking, where all
ten spacetime symmetries are broken, the vierbein can have 16 propagating degrees of freedom.
Therefore, a second result is that in a theory with spontaneous Lorentz breaking, up to ten NG
modes can appear and all of them can naturally be incorporated as degrees of freedom in the
vierbein.

These results can be obtained as well using an expansion of the vierbein in terms of infinites-
imal excitations about the vacuum. For such small excitations, the distinction between local and
spacetime components can be dropped (with Greek letters being used for both from here on). The
vierbein (with lowered indices) is then written as

eµν = ηµν +(1
2 hµν + χµν), (3.3)

in terms of symmetric components, hµν = hνµ , and antisymmetric components, χµν =−χνµ . Next,
consider small excitations of the tensor field about its vacuum value. For the case of a three-
component tensor, these have the form

τλ µν = (Tλ µν − tλ µν). (3.4)

The NG modes are the field excitations that stay within the minimum of the potential V . They
therefore obey the condition (2.5). A solution of this condition is given by the vierbein acting on
the local vev, and is equal to

Tλ µν = eλαeµβ eνγ tαβγ . (3.5)

Inserting the expansion of the vierbein into this equation and solving for the tensor-field excitations
to lowest order gives

τλ µν ≈ (1
2 hλα + χλα)tα

µν +(1
2 hµα + χµα)t α

λ ν
+(1

2 hνα + χνα)t α

λ µ
. (3.6)

Evidently, it is the combination (1
2 hµν + χµν) that contains the NG fields. Indeed, with the appro-

priate gauge choices, an expansion of this combination as virtual local Lorentz transformations and
diffeomorphisms shows explicitly that the NG modes reside in these components [8]. In this form,
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the Lorentz NG modes can be associated with the six antisymmetric components χµν while the
diffeomorphism NG modes can be most closely associated with the four gauge degrees of freedom
in hµν .

4. Gravitational Higgs Mechanism

In the context of gravity, since Lorentz symmetry is a local symmetry, the possibility of a Higgs
mechanism naturally arises. However, since there are two sets of broken symmetries (Lorentz and
diffeomorphisms) there are potentially two associated Higgs mechanisms. Furthermore, there is
also the possibility that additional massive modes can arise as field excitations obeying V ′ 6= 0 that
do not stay in the potential minimum. This section discusses these possibilities.

First, consider the case of diffeomorphisms. For this symmetry, the corresponding gauge
fields are the metric (or vierbein) excitations, and therefore a conventional Higgs mechanism would
presumably give rise to mass terms for the metric. However, it was previously shown that the usual
Higgs mechanism involving the metric does not occur [6]. This is because in the conventional
Higgs mechanism the quadratic terms (that give rise to mass terms) come from the kinetic terms
for the field acquiring a vev (the tensor field in this case). These kinetic terms consist of products of
covariant derivatives acting on the tensor field. However, for diffeomorphism-covariant (as opposed
to gauge-covariant) derivatives it is the connection that appears in quadratic form. For example,

(DρTλ µν)2 ∼ (Γσ

ρλ
tσ µν)2 + · · · . (4.1)

Since the connection consists of derivatives of the metric, and not the metric itself, there are no
mass terms generated for the metric. As a result, there is no conventional Higgs mechanism for the
metric.

However, it was also pointed out in Ref. [6] that the form of the potential V , as for example
in Eq. (2.4), does permit quadratic terms involving excitations of the metric to appear. This results
in an alternative form of the Higgs mechanism that has no direct analogue in nonabelian gauge
theory. This is because in nonabelian gauge theory, the potential V only involves the scalar Higgs
fields (and not the gauge fields). However, in the case of spontaneous diffeomorphism breaking, it
is combinations of both the tensor field and the metric field excitations that acquire quadratic mass
terms. Since the metric appears in these terms, but not in the usual Fierz-Pauli form, it becomes
possible in principle to generate mass terms that avoid the van Dam, Veltmann, and Zakharov
discontinuity [10]. However, the question of whether ghost modes are generated must also be
addressed. This typically becomes a model-dependent issue, since the form of the kinetic terms for
the tensor fields can influence whether the massive-mode excitations propagate and whether ghost
modes appear. In some models, the massive modes do not propagate, but instead remain auxiliary
fields. However, even in these cases, the massive modes can have an influence on gravitational
interactions, including possible modifications of the Newtonian potential [9].

Summarizing for the case of diffeomorphisms, the general results are that there is no con-
ventional Higgs mechanism for the graviton; however, mass terms involving the metric may arise
due to the form of the potential V , resulting in an alternative Higgs mechanism that has no direct
parallel in nonabelian gauge theory.
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The next question is whether a Higgs mechanism can occur stemming from the broken local
Lorentz symmetry. For the Lorentz symmetry, it is found that a conventional Higgs mechanism
can occur [8]. The relevant gauge field for the Lorentz symmetry is the spin connection. It appears
directly in expressions for covariant derivatives acting on local tensor components. For the local
tensor that acquires a vev, quadratic mass terms for the spin connection can be generated, following
the usual Higgs mechanism. For example, kinetic terms of the form

(DρTλ µν)2 ∼ (ω α

ρ λ
tαµν)2 + · · · (4.2)

can generate quadratic terms for the spin connection. However, a viable Higgs mechanism of this
form involving the spin connection can only occur if the spin connection itself is a dynamical field.
This requires that there is nonzero torsion and therefore that the geometry is Riemann-Cartan. Thus,
a Higgs mechanism for the spin connection is possible, but only in a Riemann-Cartan geometry.
Constructing a ghost-free model with a propagating spin connection is known to be a challenging
problem [11]. Incorporating Lorentz violation may lead to the appearance of additional mass terms,
which could create new possibilities for model building. Some preliminary investigations of this
possibility have been carried out, but the search for viable models remains largely an open problem.

The discussion in this section and the previous section shows that when Lorentz symmetry
is spontaneously broken there will in general be both massless NG modes and massive modes.
Clearly, any theory with spontaneous Lorentz breaking must account for these modes and what
their role is in the underlying dynamics described by the theory. A more definite investigation
along these lines requires working in the context of a concrete model. A given model is defined
by the rank of the tensor acquiring a vev and by the forms of the kinetic and potential terms. The
simplest example is a theory with a vector field that has a nonzero vacuum value induced by a
potential V . A model of this type is known as a bumblebee model [6, 7].

5. Bumblebee Models

There are numerous examples of bumblebee models that have been explored in recent years.
(For some specific examples, see [6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26]). They all involve a vector field Bµ that acquires a fixed vacuum value bµ . They can be defined
generally in Riemann-Cartan spacetime, or restrictions to Riemann or Minkowski spacetime can
be considered. A complete definition depends on the choice of kinetic and potential terms for Bµ

and the gravitational fields. A general Lagrangian typically has the form

L = L0−V (BµBµ ±b2)+LM, (5.1)

where L0 contains the kinetic terms, V is the potential that induces spontaneous Lorentz breaking,
and LM contains additional interaction and matter terms. A particularly noteworthy feature that all
bumblebee models share is that they do not have a local U(1) gauge symmetry. This symmetry is
broken explicitly by the form of the potential V , which in general has a functional form involving
products of Bµ ,

The specific choice of kinetic terms is largely a reflection of how the bumblebee field Bµ is to
be interpreted. One approach is to view Bµ as the vector in a vector-tensor theory of gravity. In this
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case, an appropriate kinetic term has a form similar to that investigated by Will and Nordvedt [27],

L0 =
1

16πG

[
R+σ1BµBνRµν +σ2BµBµR− 1

4
τ1BµνBµν

+
1
2

τ2DµBνDµBν +
1
2

τ3DµBµDνBν

]
, (5.2)

where Bµν = DµBν −DνBµ . A generalization of this form adds an additional fourth-order term in
Bµ [16]. In this type of approach, it is common to assume only gravitational couplings to matter,
and therefore the terms LM are not directly relevant and can be dropped.

An alternative interpretation of the vector field Bµ is that it is a generalized vector potential.
In this case, the field strength Bµν can be considered the more physically relevant quantity, and the
natural choice of kinetic terms have an Einstein-Maxwell form, as first considered by Kostelecký
and Samuel (KS) [6],

L KS
0 =

1
16πG

R− 1
4

BµνBµν . (5.3)

Note that there is still no local U(1) gauge symmetry in this class of models when a nonzero
potential V is included in the full Lagrangian. However, it is common in this case to include
couplings to matter along with some basic notion of charge in the matter sector. For example,
terms involving current couplings with charged matter can be included by defining, LM = BµJµ

with DµJµ = 0. In this case, the theory has a global U(1) symmetry that gives rise to charge
conservation in the matter sector.

In a similar way, there are different choices that can be made for the potential V . One choice
is a smooth quadratic potential,

V = 1
2 κ(BµBµ ±b2)2, (5.4)

where κ is a constant (of mass dimension zero). This type of potential allows both NG excitations
(obeying V ′ = 0) as well as massive excitations (obeying V ′ 6= 0). A second example is a linear
Lagrange-multiplier potential

V = λ (BµBµ ±b2), (5.5)

where λ is a Lagrange-multiplier field. In this case, the Lagrange multiplier field λ imposes a
constraint, BµBµ = ∓b2, which only allows NG excitations in Bµ and excludes massive-mode
excitations. However, there is still an additional degree of freedom in the form of the Lagrange-
multiplier field λ , and its effects on dynamics must be understood along with those due to the NG
modes.

5.1 KS Bumblebee Model

To illustrate the behavior of the NG and massive modes and for definiteness, consider the case
of a KS bumblebee model. In the absence of a cosmological-constant term, it has a Lagrangian
with the kinetic term L KS

0 in (5.3). To allow for effects due to a massive mode, the potential V
is chosen as the smooth quadratic potential in (5.4). For simplicity, the vacuum value bµ is taken
as timelike, and an interaction of the form BµJµ is chosen. To begin the analysis, a Riemannian
spacetime geometry is assumed. Generalization to a Riemann-Cartan geometry is deferred to a
later section.
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The equations of motion for the KS bumblebee model are obtained by varying the Lagrangian
with respect to the metric and bumblebee fields. The results are

Gµν = 8πGT µν , (5.6)

DνBµν = Jµ −2V ′Bµ . (5.7)

Here, Gµν is the Einstein tensor and T µν is the total energy-momemtum tensor, which consists of
two terms,

T µν = T µν

M +T µν

B . (5.8)

T µν

M is the energy-momentum tensor for the matter sector, while the bumblebee energy-momentum
is given by

T µν

B = BµαBν
α −

1
4

gµνBαβ Bαβ −V gµν +2V ′BµBν . (5.9)

The contracted Bianchi identities for Gµν lead to conservation of the total energy-momentum ten-
sor,

DµT µν = Dµ(T µν

M +T µν

B ) = 0. (5.10)

Similarly, the antisymmetry of the bumblebee field strength Bµν leads to a current-conservation
law following from (5.7),

Dµ(Jµ −2V ′Bµ) = 0. (5.11)

Examination of these equations reveals that when a massive mode is present, with V ′ 6= 0, it acts as
both a source of energy and charge density. However, in the absence of a massive mode, V ′ =V = 0,
and the equations reduce to the usual Einstein-Maxwell equations. Since the NG modes obey the
condition V ′ = 0, these modes by themselves obey the same equations as in electrodynamics in a
gravitational background. This raises the interesting possibility that massless photons arise in this
type of model not as a result of gauge invariance but instead as a result of the appearance of NG
modes when Lorentz symmetry is spontaneously broken.

The idea that photons might arise as NG modes due to spontaneous Lorentz breaking arose
initially in the context of special relativity, where Lorentz symmetry is a global symmetry. In these
early models, e.g., the model of Nambu [28], the nonzero vacuum value is imposed as a nonlinear
gauge choice in the context of a theory with local U(1) gauge invariance. As a result of this, there
are no physical signatures of Lorentz violation. The bumblebee models are different in that they
do not have local U(1) gauge invariance. They also permit matter couplings with the vacuum value
bµ , which can provide physical signatures of Lorentz violation.

A more complete determination of whether Einstein-Maxwell solutions can emerge from bum-
blebee models, requires understanding the role of the massive mode. It constitutes an additional
degree of freedom beyond those of the NG modes that must be accounted for. It also alters the form
of the initial-value problem. However, an exact solution of the equations of motion is not feasible,
since they are highly nonlinear in form. In particular, the massive mode couples nonlinearly to
both the NG and gravitational modes by acting as a source of charge and energy density. Moreover,
with this extra degree of freedom present, the full nonlinear theory is known to have at least one
allowed initial value (in a Minkowski-spacetime limit) for which the Hamiltonian is negative and
unbounded from below [15, 16]. It is possible, however, to restrict the theory in such a way that
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the Hamiltonian remains positive. One assumption is that the matter current Jµ is conserved and
does not mix with the effective bumblebee charge stemming from the nonlinear field interactions.
As stated above, this requires that the matter sector has a conserved charge (as expected in ordinary
matter), and therefore the theory has a global U(1) symmetry. With this assumption, initial values
can then be chosen that separate the full phase space into regions that do not mix. In particular, a
region of phase space that maintains a positive Hamiltonian can be selected.

It may be possible as well to alter the stability of the theory by adding nonrenormalizable
terms to the potential V . It has, for example, been shown (in Minkowski spacetime) that nonpoly-
nomial potentials can lead to spontaneous Lorentz breaking and that such potentials are stable [13].
Ultimately, however, the potential instability is not likely to be relevant for physics. Viewing the
bumblebee as an effective theory arising from a more fundamental and stable quantum theory of
gravity, the apparent instabilities would merely reflect an incomplete knowledge of the physics en-
tering at energy scales above that of the effective theory. However, in the absence of a fundamental
quantum theory, it is not possible to pursue these questions further.

For the purposes considered here, with the aim of illustrating the effects of the NG and massive
modes in a gravitational theory, it suffices to consider the bumblebee model with a KS kinetic term
and conserved matter currents. It also suffices to work in the linearized limit. In such a limit,
the Hamiltonian is positive (in a Minkowski-spacetime limit), while the massive mode retains its
feature of behaving as a source of both charge and energy density. Hence, this limit is suitable for
examining the effects of the massive mode on the gravitational interactions.

5.2 NG and Massive Modes

Solutions for the diffeomorphism and Lorentz NG modes can be obtained directly in the lin-
earized approximation. With a vector vev bµ , symmetry under three Lorentz transformations and
one diffeomorphism are spontaneously broken. Thus, there can be up to three Lorentz NG modes
and one diffeomorphism NG mode. Using a vierbein formalism, the NG modes can be written as
small virtual transformations away from the vacuum solution. Or, alternatively, gauge choices can
be made that leave the NG modes as combinations of the bumblebee excitations E µ = (Bµ − bµ)
and the metric excitations hµν .

First, considering the diffeomorphism NG mode, it is found that it drops out completely from
the linearized theory and does not propagate as a physical massless mode [8]. Indeed, any La-
grangian formed out of contractions of the curvature tensor and the field strength Bµν will not
contain an NG mode for the broken diffeomorphisms.

In contrast, the Lorentz NG modes are found to consist of two propagating transverse massless
modes and one auxiliary mode that does not propagate [8]. They obey a condition that can be
written in terms of E µ and hµν as bµ(Eµ − 1

2 hµνbν) = 0, which resembles a type of axial-gauge
condition in electromagnetism in the presence of gravity. Hence, as expected, it is found that
the Lorentz NG modes behave like photons in curved spacetime. However, it must be stressed
again that the bumblebee models in general have additional matter couplings that can provide
physical signatures of Lorentz violation, so the NG sector coupled to matter is not strictly speaking
equivalent to Einstein-Maxwell theory.

A massive mode consisting of field excitations that do not stay in the potential minimum can
also occur as a solution of the equations of motion [9]. Unlike the NG modes, it cannot be written in
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terms of the vierbein and vacuum values alone, since the condition BµBµ =∓b2 does not hold for
the massive mode. At linear order, and in terms of E µ and hµν , the massive mode can be identified
as the combination

β =∓
bµ(Eµ − 1

2 hµνbν)
b2 . (5.12)

It is clearly independent of the Lorentz NG modes, which obey β = 0.
To lowest order, the equations of motion reveal a condition the massive mode must obey,

bµ
∂µβ ' 0. (5.13)

For the case of a timelike vector field, with bµ = (b,0,0,0), this condition shows that the massive
mode does not propagate as a free field in the linearized limit. Instead, it is purely an auxiliary field
β (~x) that has no time dependence. As a result, its value is fixed by the initial conditions at t = 0.
Although it does not propagate, it can nevertheless alter the form of the static potentials.

As an example of this, consider a static point particle with mass m and charge q. In the
absence of Lorentz violation the static potentials are the usual Coulomb potential Φq = q/4πr and
the Newtonian gravitational potential Φm = −Gm/r. Both Φq and Φm obey Poisson equations
that determine the form of these potentials. Each has a source given by the point-particle mass or
charge density. In the presence of spontaneous Lorentz violation, it is convenient to introduce a
third potential ΦB for the bumblebee massive mode. It is also defined by a Poisson equation,

~∇2
ΦB(~x) =−ρB, (5.14)

where it is the massive mode β (~x) that acts as a source of density ρB = −4κb2β . It is this extra
degree of freedom that enters in the equations of motion and alters the form of the electromagnetic
and gravitational static potentials.

Electric and magnetic fields can be defined with the usual form, but as functions of the bumble-
bee excitations. First define Fµν = ∂µEν −∂νEµ , and solve for its components using the linearized
field equations. The ~E and ~B fields can then be determined for the case of a static point particle. It
is found that the fields are modified by the presence of the massive mode and are given as

~E =−~∇Φq−~∇ΦB, ~B = 0. (5.15)

Evidently, there is no static magnetic field generated for the case of a purely timelike vacuum value
bµ . However, the static electric field is modified by the presence of the massive-mode potential.
Even for a neutral point mass (with q = 0), a nonzero massive mode can generate a nonzero electric
field.

Similarly, the modified gravitational potential Φg can be determined from the field equations
of motion. For the case of a point mass, it is found to have the form

Φg = Φm−4πGbΦB. (5.16)

Clearly, the gravitational potential is altered by the massive mode β (~x). However, the specific
form that the potential takes depends on the choice of the initial value for the massive mode. This
opens up the possibility of exploring modified forms of the gravitational potential in search of, for
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example, an alternative explanation of dark matter. In fact, there is considerable freedom in this
approach, since the only experimental constraints are that the potential must agree with the usual
Newtonian potential over probed distance scales.

Given the lack of specific experimental guidance, a natural choice of initial value would be to
set β = 0 at time t = 0. In this case, ΦB = 0, and the static potentials reduce to the usual Coulomb
and Newtonian expressions. This holds true as well with a nonzero massive mode if the scale
|M2|= 4κb2 becomes extremely large, approaching the Planck scale, for example. Here again, the
electromagnetic and gravitational potentials approach their conventional values. These results in
particular reveal that the usual Einstein-Maxwell solutions (describing massless photons as well as
the correct static potentials) can emerge from a theory that has no local U(1) gauge symmetry. The
photons in this case are the Lorentz NG modes, and the massive mode remains extremely heavy
and thus has little effect on the static potentials.

Other examples with ΦB 6= 0 can be considered as well. In these cases, both the static grav-
itational and Coulomb potentials are modified by the massive mode. One simple example is the
choice ΦB =−Φq. It has Φg 6= Φm, and hence has a modified Newtonian potential. The solution of
the bumblebee field has the form of a total derivative Eµ = ∂µ χ , where χ is a scalar depending on
Φm and Φq [9]. The field strength Fµν vanishes because the bumblebee density cancels the charge
density ρq. However, the bumblebee excitations Eµ remain nonzero through the dependence on
Φm. This type of solution has an unusual behavior that has been identified as potentially flawed
[15, 16] due to the formation of shock discontinuities in Eµ . However, in fact, this behavior is to
be expected. For a point charge, the singularities in Eµ merely reflect the fact that the field has 1/r
dependence stemming from its dependence on Φm. Indeed, the same behavior appears in the usual
solutions of Einstein-Maxwell theory in an appropriately chosen gauge.

5.3 Higgs Mechanism for the Spin Connection

In Riemann-Cartan spacetime, the possibility of a Higgs mechanism involving the Lorentz
NG modes becomes a possibility. In this mechanism it is the spin connection that gains mass terms
as a result of spontaneous Lorentz breaking. As long as the spin connection is dynamical, this
mechanism can in principle be viable, leading to physical massive propagating spin-connection
fields. In practice, however, it is difficult to construct a model that is ghost- and tachyon-free.

An illustration is provided by the KS bumblebee model in Riemann-Cartan spacetime. In this
case, when Bµ has a vacuum value bµ , the field strength Bµν can be written in terms of the vierbein
and spin connection as

Bµν = (e β

µ ω
α

ν β
− e β

ν ω
α

µ β
)bα . (5.17)

When Bµν is squared, quadratic terms in ω
α

µ β
appear in the lagrangian, which perturbatively have

the form
−1

4 eBµνBµν ≈−1
4(ωµρν −ωνρµ)(ωµσν −ω

νσ µ)bρbσ . (5.18)

It is these quadratic terms that allow a Higgs mechanism to occur involving absorption of the
Lorentz NG modes by the spin connection.

In Ref. [8], a number of models with generalized kinetic terms for the spin connection were
considered. Finding a physical model with no ghosts, however, remains an open problem. The
difficulty is in finding kinetic terms describing propagating modes that are compatible with Eq.
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(5.18) as a mass term. If ghosts are permitted, then the mechanism is straightforward. For example,
with a kinetic term in the gravitational sector of the form

L0,grav = 1
4 RλκµνRλκµν . (5.19)

all the fields ωλ µν with λ 6= 0 propagate as massless modes. When this is combined with the mass
term (5.18), some of the propagating modes are converted to massive modes. Other examples can
be studied as well, aided by decomposing the fields ωλ µν according to their spin-parity projections.
Evidently, the incorporation of spontaneous Lorentz violation in theories with torsion provides a
new arena in the search for models with propagating massive modes. The challenge, however, is to
find viable models that do not allow ghosts.

6. Phenomenology of Lorentz Violation

The effects described in this paper originating from spontaneous Lorentz breaking can provide
clear signals of physical Lorentz violation. In the end, there are basically three classes of signals:
those arising from NG modes, from massive modes, and from matter couplings. The phenomeno-
logical implications of each of these can be considered.

The NG modes either lead to additional gravitational modes in the vierbein that would differ
from the usual forms of gravitational radiation predicted in general relativity, or in certain cases
they can be interpreted as known gauge fields such as the photon or graviton [29]. However, in the
latter case, there would be no observable consequences of the NG modes themselves (at least at
leading order) other than the existence of the previously known massless gauge particles.

Massive modes can arise in two ways, either through a Higgs mechanism in Riemann-Cartan
spacetime, or as field excitations that do not remain in the potential minumum. In either case, they
could in principle be detectable as new previously unobserved propagating particles. Alternatively,
however, the massive modes might remain auxiliary fields that do not propagate, as in the example
of the KS bumblebee. Their influence then appears to be limited to altering the form of the relevant
static potentials. In either of these scenarios, it is likely that the scale associated with the massive
modes is extremely high, and therefore their observable consequences are likely to be quite small.

Any remaining signals of spontaneous Lorentz violation would involve couplings with matter
fields. For example, at low energy, signals of physical Lorentz violation would occur when a tensor
vev, e.g., 〈Tλ µν〉, couples with conventional Standard-Model or gravitational fields. As a result,
any possible signal originating in this way would be identical to a signal arising in the SME. This
is because the SME allows for all observer-independent violations of Lorentz symmetry involving
Standard-Model and gravitational fields. It is defined as a general effective field theory at low
energy, but it also provides a connection to the Planck scale through operators of nonrenormalizable
dimension [12]. In many cases, it is sufficient to restrict the full SME to minimal extensions
involving only, for example, power-counting renormalizable or SU(3)×S(2)×U(1) gauge-invariant
terms. To consider experiments in atomic physics it often suffices to restrict the SME to its QED
sector. Similarly, limits of the SME that include (or exclude) gravity can be defined, and in the case
with gravity either a Riemann or Riemann-Cartan geometry can be assumed.

A group of theorists centered at Indiana University initiated a comprehensive phenomenolog-
ical investigation of Lorentz violation more than a decade ago. These investigations span virtually
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all areas of physics. The scope of these investigations includes searching for signals of sponta-
neous Lorentz violation (as well as other, e.g., explicit, forms of Lorentz breaking). This work has
stimulated a number of new and improved experiments. These include classic tests of Lorentz and
CPT symmetry, such as g−2 experiments in Penning traps, Hughes-Drever experiments, modern-
day Michelson-Morley experiments, as well new types of tests, such as in space satellites or with
astrophysical sources. Together they cover a wide range of particle sectors in the Standard Model.
Some specific examples include tests with electrons [30, 31], muons [32], hadrons [33, 34], neutri-
nos [35], and photons [36]. Many of these efforts are on-going, with plans for attaining significantly
improved sensitivities in the coming years.

7. Summary and Conclusions

This work has examined possible consequences of spontaneous Lorentz violation in the con-
text of gravity. Much of the focus has been on questions concerning the fate of the NG modes, the
possibility of a Higgs mechanism, and the appearance of additional massive modes. In general, it
is found that in theories with spontaneous Lorentz violation, up to ten NG modes can appear. They
can all be incorporated naturally in the vierbein. For the example of a KS bumblebee model, the
Lorentz NG modes can propagate like photons in an axial gauge. In principle, two Higgs mecha-
nisms can occur, one associated with broken diffeomorphisms, the other with Lorentz symmetry.
However, it has been shown that a conventional Higgs mechanism (for diffeomorphisms) involving
the metric does not occur. If the geometry is Riemann-Cartan, then a conventional Higgs mecha-
nism (for the Lorentz symmetry) can occur, in which the spin connection acquires a mass. However,
in a Riemann geometry, this type of Higgs mechanism is not possible. Nonetheless, an alternative
type of Higgs mechanism can occur, leading to the appearance of additional massive modes involv-
ing the metric field. These can lead to altered forms of the gravitational potential. Clearly, there are
numerous phenomenological questions that arise in these processes. However, all relevant signals
of Lorentz breaking at low energies invloving couplings to known Standard-Model fields can be
pursued comprehensively using the SME.
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