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1. INTRODUCTION

The Large Hadron Collider (LHC) will soon probe physics at the TeV scale. Many theoretical
models assume that phenomena at LHC energies involve strongly interacting systems (for reviews
see [1–3].) Yet, theories of strong dynamics are very difficult to study from first principles. As
a result, the predictions of many phenomenological models are affected by a large margin of un-
certainty. Fortunately, recent advances in lattice gauge theory (LGT), paralleled by huge increases
in available computational power, have made it possible to derive precise quantitative information
for models based on strong dynamics by numerical simulation techniques. In the last year, sev-
eral groups have begun aggressive calculational programs to expand our understanding of strongly
interacting gauge theories that are hopefully unlike the very familiar quantum chromodynamics
(QCD).

2. Dynamical electroweak symmetry breaking

The current standard model of electroweak interactions was first proposed in its essentially
complete form by Weinberg in 1967 [4]. At the time, it was unclear whether this model was
renormalizable and thus it was ignored for four years until its renormalizability was proven by ’t
Hooft [5]. Since then it has become the most successful theory of particle physics, withstanding
more than three decades of testing with ever increasing precision. Despite the tremendous efforts
of experimental particle physicists worldwide, two open questions remain. The first question is
how to incorporate the phenomena of neutrino oscillations and will not be discussed further here.
The second question is what are the nature of the Nambu-Goldstone bosons (NGBs) which are
eaten to give mass to the electroweak bosons via the Higgs mechanism. This review will mostly
focus on those mechanisms of electroweak symmetry breaking (EWSB) which involve new strong
interactions and, thus, where LGTwill be the preferred calculational tool for studying the dynamics
of such variants of the electroweak theory.

The original proposal, still very much consistent with experimental data, is where a single
Higgs doublet breaks electroweak symmetry and leaves behind a single, neutral scalar Higgs boson
with a mass no more than a few hundred GeV, which plays a critical role in making the electroweak
theory viable at LHC energies. But theoretical advances in the 1970’s have led to simple naturality
arguments focused on the renormalization of the Higgs mass which conclude that this theory must
break down at energies not more than a few TeV. To make the breakdown scale higher and therefore
clearly beyond the reach of the LHC would require some level of fine tuning of the minimal stan-
dard model. Rather than accept such careful fine-tuning, most theorists now conclude that some
new physics described by a theory that extends beyond the standard model – a BSM theory – will
manifest itself at LHC energies. Over the last three decades, a large number of candidate BSM
theories has been developed. They must satisfy many stringent constraints in order to be viable,
and this excludes many possibilities. Still, based on current experimental results it is not possible
to select among them.

One of the earliest alternatives to the single Higgs doublet mechanism was proposed by Wein-
berg as well [6, 7] and is generally referred to as dynamical electroweak symmetry breaking
(DEWSB), or sometimes technicolor [8] to emphasize the analogy with QCD. In the minimal

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
2
1

Strong Interactions for the LHC George T. Fleming

technicolor model, a new strong force similar to QCD but operating at the TeV scale (three or-
ders of magnitude larger than the QCD scale) plays a central role, driving electroweak symmetry
breaking. In this model a host of new TeV-scale resonances, analogous to the ! , " , # , etc. of
QCD, may be visible at the LHC. Unfortunately, a technicolor sector with the same low energy
structure as QCD but scaled up to the electroweak scale is phenomenologically disfavored, as de-
scribed below. However, this creates an opportunity for LGT specialists to survey the low energy
landscape of spontaneously broken gauge theories for those with a sufficient number of NGBs and
other low energy structure that may be quite different than QCD but favored by the phenomenology
of DEWSB.

A much studied possibility in recent years is that space may have extra dimensions which are
very small in size and therefore have not been observed up to now, but could be directly seen at LHC
energies. In some extra-dimensional scenarios, the effective four-dimensional theory at LHC en-
ergies is weakly coupled, while in others the effective theory exhibits strong-coupling phenomena
almost indistinguishable from technicolor theories. In fact, this similarity between some extra-
dimensional models and technicolor models, typically referred to as “holography” or “Ads/CFT”,
has been employed by model builders to gain some insight into strong dynamics. This creates fur-
ther opportunities for collaboration with LGT specialists to match these five-dimensional effective
theories with their corresponding four-dimensional, UV-complete gauge theories. See review in
these proceedings by E. Katz [9].

3. WASN’T TECHNICOLOR RULED OUT A DECADE AGO?

3.1 The Peskin-Takeuchi S parameter

In the absence of any direct evidence for new particles that would reveal the physics of EWSB,
three decades of effort starting with Veltman [10, 11] have gone into using precision electroweak
parameters to limit the number of possible EWSB theories. A particularly useful pair of parameters,
S and T , were devised by Peskin and Takeuchi [12, 13] to place severe constraints on models of
DEWSB. These constraints assume that changing the number of flavors (NTF) or colors in SU(NTC)
gauge theories mainly affects the counting of quark degrees of freedom. They must further assume
important non-perturbative features remain unaltered: confinement, chiral symmetry breaking and
the ordering of states in the hadronic spectrum. This will be called the scaled-up QCD hypothesis
in this review. Assuming scaled-up QCD, S in technicolor are estimated to be bounded by the very
crude relation:

S! 1
6"

[
NTCNTF
2

]
(3.1)

The latest phenomenological constraints on S and T , shown in Fig. 1, when combined with the
naive scaling relation of Eq. (3.1) leads the Particle Data group to conclude: This rules out simple
Technicolor models with many techni-doublets and QCD-like dynamics [1]. In other words, tech-
nicolor models with QCD-like dynamics and NTC, NTF " 4 are still consistent with, but somewhat
disfavored by, precision electroweak experiments. Since the allowed range still includes QCD it-
self, it is important to directly calculate S in lattice QCD and compare with estimates like Eq. (3.1)
to show there are no underestimated systematic errors in the phenomenological approach.
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Figure 1: The shaded ellipses are the phenomenologically allowed regions for S and T at 68%CL, and show
a strong correlation (87%) between S and T [1, 14]. The shaded vertical bands are the recently computed
values of S in technicolor with NTC = 3 andNTF = 2 at 68%CL [15]. The color of the shaded region indicates
the reference value for the Higgs mass.

The basic observable that must be computed in QCD to estimate precision electroweak param-
eter S in scaled-up QCD is the low energy part of the left-right current-current correlation function

$µ%
LR (q) = igµ%$LR(q2)+ (qµq% terms) ≡

∫
d4xe−iqx

〈
JµL (x)J%R (0)

〉
(3.2)

The low energy part is given by the slope of the correlation function

$′
LR(0) =

d
dq2

$LR(q2)
∣∣∣∣
q2→0

. (3.3)

If we use the identity JµL,R(x) = JµV (x)± JµA (x) then the low energy part is also given by $′
LR(0) =

[$′
VV (0)−$′

AA(0)].
Once the current-current correlator has been computed, there are still several steps required to

extract the precision electroweak parameters. In next-to-leading-order (NLO) chiral perturbation
theory [16–19]

$µ%
LR (q) =

[
gµ% − qµq%

m2" −q2

]
f 2" +

(
qµq% −gµ%q2

)[
1
3

(
1− 4m2"

q2

)
J(q2)+

1
48"2

(
l5−

1
3

)]
(3.4)
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where the goal is to determine l5. Note however that the first term has a pion pole contribution that
must be included in any fit to the lattice results. The two-body phase space integral J(q2) arises
from the two-pion intermediate state, leading to a cut starting at q2 = 4m2" .

The low energy constant l5 is logarithmically divergent in the chiral limit and must be cut off,
introducing some scale dependence

lr5(µ) = l5+ log
m2"
µ2

(3.5)

where µ is some convenient UV scale, e.g. in QCD, typically µ = 4" f" or m! . In the context
of DEWSB, precisely how the divergence is cut off will depend on the number of NGBs. Three
of the NGBs will be cut off by the masses of the W and Z bosons when they are eaten. Extra
pseudo Nambu-Goldstone bosons (PNGBs) will be problematic, if present, unless an additional
mechanism, described in Sec. 3.2 is provided to give them masses. Once the PNGBs are massive,
the should behave analogously to K mesons in the chiral perturbation theory of QCD. Finally, the
precision electroweak parameters like S are defined to be zero in the minimal standard model with a
single Higgs field. So, the standard model contribution must be subtracted, assuming some specific
value for the Higgs mass. In summary, the low energy constant lr5(µ) computed in QCD is related
to the precision electroweak parameter S by

S =
1
12"

[
lr5(µ)+ log

µ2

m2H
− 1
6

]
(3.6)

in the case NTF = 2 with no PNGBs.
The first determination of l5 was made recently by the JLQCD collaboration [15]. The quoted

value Lr10(m!) = −5.2(+7−5)× 10−3, converted in to the convention of Peskin and Takeuchi [13]
by lr5(µ) = −192"2Lr10(µ), can be used with Eq. (3.6) provided m! is rescaled by identifying
F" with the vacuum expectation value of the Higgs field, v = 2−1/4G−1/2

F = 246 GeV. Taking
m! = 770 MeV and the computed value of F" = 87.3(5.6) MeV from [20] yields S = 0.41(+3−4),
0.36(+3−4), and 0.30(

+3
−4) for mH = 117, 340, and 1000 GeV, respectively. In Fig. 1, these allowed

regions for S are plotted along with the phenomenologically allowed regions for S and T at 68%
CL. The disagreement between the two determinations a bit more than the two sigma level and
essentially independent of the input Higgs mass.

So, the S parameter can be used to place constraints on the number of technicolors (NTC) and
techniflavors (NTF) a technicolor theory may have when the underlying dynamics are like QCD.
However, it is in fact a dynamical question whether a given theory is QCD-like as NTC and NTF are
varied. If the dynamics of the theory are sufficiently different from QCD then the above estimates
do not apply. In some walking theories (see Sec. 4.4 below) S could be very small and possibly
negative. So, the current phenomenological bounds on S do not yet place stringent constraints on
technicolor theories due to the lack of understanding how the dynamics of confining gauge theories
change as the number of colors and flavors, or color representation of the fermions, are varied.

3.2 Fermion masses and flavor changing neutral currents

QCD-like technicolor theories with small NTC and NTF and no extra PNGBs cannot be ruled
out alone by precision EW observables like the S parameter. However, such a technicolor theory
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has only explained how theW and Z bosons have become massive through the Higgs mechanism.
Technicolor alone does not explain how standard model fermions become massive nor how any
additional NGBs beyond the three eaten during DEWSB become massive PNGBs. It seems natural
to consider additional gauge interactions, called extended technicolor (ETC) [21, 22], that couple
to both standard model fermions and technifermions. The ETC gauge symmetry will be broken
at some higher scale &ETC and at EW energies exchange of massive ETC gauge bosons will be
effectively described by four fermion operators given schematically as

(
QQ

)(
QQ

)

&2ETC
,

(qq)
(
QQ

)

&2ETC
,

(qq)(qq)
&2ETC

. (3.7)

where Q’s are technifermions and q’s are standard model fermions. When technicolor grows strong
enough to break chiral symmetry and form

〈
QQ

〉
condensates, the first operator will give mass to

uneaten PNGBs and the second operator will give mass to standard model fermions. However, the
third operator is problematic because it gives rise to flavor changing neutral currents. In particular,
experimental measurements of K0–K0 mixing and KL → µ+µ− as well as upper limits on other
rare processes require &ETC ' 1000 GeV [23].

Since ETC interactions will be highly suppressed at EW energies due to such a high ETC
scale, it is natural to wonder whether standard model fermion masses can still be generated by this
mechanism. For example, the mass of the strange quark will be given by ms ∼

〈
QQ

〉
/&2ETC. In

QCD, the chiral condensate is 〈qq〉/ f3" ≈ 25. If
〈
QQ

〉
/v3 ∼ 25 as well, where v= 2−1/4G−1/2

F =
246 GeV, this leads to very light strange quarks: ms ∼ 0.4 MeV. Thus, some new dynamics is
required to produce modestly larger techniquark condensates than would naturally appear in a
QCD-like theory. Walking is one such dynamical mechanism, described in Sec. 4.4. Even assuming
a mechanism for enhancing condensates can be realized, flavor changing neutral currents still pose
significant challenges for detailed models of DEWSB [23].

4. FLAVOR DEPENDENCE OF SU(N) YANG-MILLS GAUGE THEORY

In Sec. 4.1, we review what is known about the flavor dependence of SU(N) Yang-Mills theory
from the perturbative expansion of the beta function. We also mention other non-perturbative and
quasi-perturbative techniques for modeling flavor dependence. We focus on the question of whether
theory has an infrared fixed point (IRFP) for a given number of flavors Nf . In Sec. 4.2, we review
two decades of efforts to study this problem by determining the flavor dependence of the finite
temperature phase transition. In Sec. 4.3, we review past and current efforts to understand the
low energy dynamics of Yang-Mills by studying the non-perturbative running of the renormalized
coupling.

4.1 Yang-Mills Conformal Window

The renormalization group describes the scale dependence of the renormalized coupling of
Yang-Mills in a general scheme:

L
'
'L

g(L) = ( (g) g→0∼ b0g3+b1g5+b2g7+ · · · (4.1)
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In the asymptotic expansion (g → 0) the first two universal coefficients are independent of the
scheme:

b0 = − 1
(4")2

(
11
3
Nc−

2
3
Nf

)
, b1 = − 1

(4")4

[
34
3
N2c −

(
13
3
Nc−

1
Nc

)
Nf

]
. (4.2)

Of course, b0 < 0 for Nf < 11
2 Nc implies that SU(Nc) Yang-Mills gauge theory with relatively few

number of flavors is asymptotically free.

2 4 6 8 10 12
g2
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!20 !10 0 10 20 30 40
Log!Μ"%I#

2
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g2

Nf#12, 3!loop SF scheme

Figure 2: The left panel shows the two and three loop beta function in the Schrödinger Functional scheme
with Nf=12 flavors [24]. The right panel shows the running of the coupling to the IR fixed point from both
sides. The reference scale & may be different on each branch.

For Nf " 11
2 Nc, the theory is still asymptotically free but the two loop term b1 can cancel b0

forming a perturbative infrared (IR) fixed point [25–27]. As Nf steadily decreases from 11
2 Nc, the

magnitude of the IR fixed point increases until higher order perturbative and even non-perturbative
effects become significant, at which point even the definition of the renormalized coupling becomes
scheme dependent. Regardless of the choice of scheme, the physics of the IR fixed point is made
clear by the approximate conformal behavior of the theory at long distances. Such theories are said
to be in the conformal window. Eventually, when Nf is sufficiently small, the conformal window
closes when the gauge interactions become strong enough to confine and/or spontaneously break
chiral symmetry.

4.2 Flavor Dependence of Finite Temperature Transition

It would seem that lattice field theory techniques are ideally suited to determine the size of the
conformal window in Yang-Mills. Yet, several efforts in the 1980’s [28–32] and again in the 1990’s
[33–36] failed to produce a consistent picture of the zero temperature transition from a few flavors
of confined quarks to many flavors of deconfined quarks in the non-Abelian Coulomb phase of the
conformal window. This is in sharp contrast to the incredibly successful use of the lattice regulator
to study the finite temperature transition of QCD during precisely the same period.

In Appendix A, we have summarized the relevant calculations from this period for staggered
fermions with the unimproved SU(3) Wilson gauge action, with particular focus on Nf ≥ 3 degen-
erate fermions. Although some studies exist with Wilson fermions [36] and staggered fermions
with various forms of improvement, this forms the bulk of all such studies to determine the size
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Figure 3: Finite volume effects at fixed ( (thus fixed a) for N f = 4 staggered fermions disproportionally
affect ! meson and N nucleon and not their parity partners [37].

of the conformal window. The general trend of the data is clear: as the number of flavors in-
creases, the critical temperature decreases relative to some dimensionful quantity computed at zero
temperature, say Tc/m! . Although each of the previous decades’ efforts were encouraged by the
theoretical, algorithmic and computational advances of the time, the failure to make progress ap-
pears related to the method of choice for defining the conformal window. In principle, one could
study the finite temperature phase transition as the number of flavors increases and extrapolate this
line of transitions to the critical number of flavors where the temperature vanishes. In practice, this
proved to be quite challenging due to various difficulties in making the quarks light enough or the
spatial box big enough (see Fig. 3).

Recently, two new groups have revived this approach. The Groningen-Frascati group is fo-
cused on eight and twelve flavors of improved (asqtad) staggered fermions [38–40]. The Columbia
group is focused on eight flavors of unimproved staggered fermions with the DBW2 gauge action
[41]. Both groups provide new evidence that SU(3) Yang-Mills with eight flavors is a confining
theory with spontaneously broken chiral symmetry and a lattice spacing that vanishes as the bare
coupling approaches zero. Apparently, the use of improved actions as well as more computational
power was all that was needed to resolve some of the questions raised by the earlier work of the
Columbia group at eight flavors [35]. Both groups are interested in applying their methods to study
SU(3) Yang-Mills with twelve flavors where it is likely the theory is governed by an IRFP at low
energies.

4.3 Flavor Dependence of the Running Coupling

In hindsight, the calculations of Damgaard et al. [33] and Heller [42, 43] of Yang-Mills with
Nc = 3 colors and Nf = 16 flavors revealed the basic problem with the approach: in order to see
chiral symmetry breaking on a finite temperature lattice with relatively few lattice sites in the tem-
poral direction the bare lattice coupling must be made relatively strong. Using the renormalization

8
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group, this implies that the lattice spacing is relatively large and the temperature is relatively low.
However, if the dynamics at the scale of the lattice spacing are strong enough, using the renormal-
ization group to take the continuum limit may not be possible. In the 16 flavor case, the IR fixed
point is completely understood in perturbation theory and no chiral symmetry breaking should oc-
cur. Yet, Damgaard et al. observed such a transition using the same techniques employed by other
groups with smaller numbers of flavors. They surmised, and Heller later showed, that the chiral
transition occurred along a renormalization group trajectory where the gauge dynamics becomes
arbitrarily strong at short distances. In other words, there is no continuum limit for the apparently
observed finite temperature transition because it occurs on the wrong side of the IR fixed point.
This is shown in Fig. 2 for twelve flavors. Sixteen flavors is similar except the fixed point value
for the running coupling is much smaller. The point is that the continuum limit doesn’t exist if the
coupling flows to the IR fixed point from above because the theory flows to strong coupling in the
ultraviolet. Thus, it is reasonable to question the validity of the other aforementioned calculations
since it is not at all clear that they are connected to the asymptotically free continuum limit by the
renormalization group.

There are in fact several reasonable, non-perturbative definitions of the Yang-Mills running
coupling which all coincide to two loops in perturbation theory. One example can be derived from
the static quark potential V (R). For an infinitely heavy quark-antiquark pair separated by a distance
R the force F(R) felt by the pair is defined to be proportional to the renormalized coupling at the
distance R

)QQ(R) =
g2QQ(R)

4"
≡ 1
CF

R2F(R), F(R) =
'
'R

V (R) (4.3)

For pure Yang-Mills (Nf = 0), the confining potential grows linearly at long distances so )QQ(R) R→*∼
R2. For a spontaneously broken theory (Nf > 0), the color flux tube responsible for the linear rise
in the potential will eventually break when the static-light meson-antimeson state becomes ener-
getically favored. Without some residual attractive force between the two static-light mesons, the
renormalized coupling )QQ(R) will rapidly vanish. In the conformal window, the force between
static quarks is given by a non-Abelian Coulomb potential with the long distance coupling set by
the IR fixed point.

In principle, the static quark potential is an ideal tool to search for the edge of the conformal
window. In practice, the computational costs are such that the running of )QQ(R) has only been
computed out to confining distances in the quenched theory [44, 45]. In a typical zero tempera-
ture lattice simulation with light dynamical quarks in a periodic box, there are four scales in the
problem: the box size L, the light quark mass m−1, the potential scale R and the lattice spacing a.
In general, all four scales should be widely separated, suggesting that L > 64a at least, which is
currently impossible given the available computational resources and the performance of the best
available algorithms.

To make the calculation of the running coupling tractable in a practical lattice simulation given
available computational resources, the coupling should be computed on a scale ofO(L) to eliminate
the required scale separation L- R. A new non-perturbative scheme was presented at this meeting
by M. Kurachi and E. Itou [46] where square Creutz ratios [47] calculated at a fixed fraction of the
spatial box size can be used to define a renormalized coupling. This eliminates one of the separate
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scales needed in the static potential scheme and is therefore much more likely to be tractable in
calculations with dynamical fermions. Further work is underway to eliminate the need for a non-
zero quark mass using twisted boundary conditions.

Another non-perturbative definition of the running coupling is to perform calculations in a
constant background chromoelectric field. The Schrödinger functional (SF) is the partition function
describing the quantum mechanical evolution of a system from a prescribed state at time t = 0
to another state at time t = T in a spatial box of size L with periodic boundary conditions [48–
50]. Dirichlet boundary conditions are imposed at t = 0 and t = T where T is O(L). They are
chosen such that the minimum-action configuration is a constant chromo-electric background field
of strength O(1/L). This can be implemented in the continuum [48] or with lattice regularization
[24]. In either case, by considering the response of the system to small changes in the background
field, a gauge invariant running coupling can be defined, valid for any coupling strength.

Heller had the original idea of studying the running of the SF renormalized coupling to look
for flow towards an IR fixed point [42, 43]. With very little computational effort, he clearly demon-
strated that the Nf = 16 chiral phase transition observed by Damgaard et al. [33] was triggered
by strong dynamics at the UV scale and at long distances the coupling was flowing rapidly in the
general direction of the very weak IR fixed point of Nf = 16 flavors from above. Of course, to
compute non-perturbatively the numerical value of such a weak fixed point would have required a
great deal of computing power to statistically resolve it from zero.

In the conformal window, the coupling at the IR fixed point g∗ increases as the number of
flavors decreases. So, for smaller Nf , while it may be desirable to continue to work on the “wrong”
side of the IR fixed point due to the relatively rapid flow towards the fixed point there may be
very little “room” in which to work without triggering a bulk lattice phase transition. On the
asymptotically free side of the IR fixed point, the flow may be gradual and difficult to distinguish
from lattice artifacts due to finite lattice spacing, but there will be confidence that an extrapolation
to the continuum limit is still possible.

Deeper into the conformal window of SU(Nc) gauge theories, it is possible the IR fixed point
g∗ may become sufficiently large that it is no longer well described by perturbation theory yet not
strong enough to trigger spontaneous symmetry breaking. In SUSY QCD, this scenario leads to a
non-trivial duality between the perturbative description defined in asymptotically free limit and a
low energy description of new degrees of freedom that emerge at IR scales (see [51] for a review).
There are arguments to suggest the IR fixed point of non-supersymmetric SU(Nc) gauge theories
will remain perturbative throughout the conformal window [52]. So, a lattice calculation that could
determine g∗ with sufficient accuracy to show disagreement with perturbation theory raises the
possibility that something as interesting as Seiberg duality may occur near such a non-perturbative
IR fixed point.

Recently, we presented the first non-perturbative evidence for the existence of an IRFP in
SU(3) Yang-Mills with twelve flavors [53]. Additional evidence was presented that SU(3) with
eight flavors shows no signs of an IRFP. Further details of the calculation were presented by Neil
[54] at this meeting. The main observable computed was the running coupling in the SF scheme.
Questions as to the scheme dependence of the conclusion are unavoidable and, thus, it is crucial
to test this conclusion by other means. The work of the Columbia group and the Groningen-
Frascati group, already mentioned in Sec. 4.2, are important cross checks because they do rely
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on observables related to confinement and chiral symmetry breaking. We hope that the efforts of
Kurachi, Itou and collaborators will soon result in a calculation of the running coupling in their
scheme for twelve flavors to test the scheme-independence of the IRFP.

Finally, a calculation of the distribution of low-lying eigenvalues of the staggered Dirac op-
erator was presented by Holland [55]. In this work, the authors present preliminary evidence that
eigenvalue distributions for eight and twelve flavors of staggered fermions follow the predictions
of random matrix theory for the epsilon regime (M" . L−1 . F" . a−1) of chiral perturbation
theory. To determine if this result is evidence against the presence of an IRFP for twelve flavors,
two questions must be resolved. First, what is F" and is the condition L−1 . F" satisfied on these
configurations? Second, what are the expected eigenvalue distributions for twelve flavors if the low
energy theory is governed by an IRFP, or if F"L " 1, and how do they compare to the computed
distributions? We believe the technique of epsilon-regime calculations can play an important role
in future explorations of confining field theories. So, it is essential to continue these calculations
until the apparent contradiction can be resolved.

4.4 Walking Yang-Mills

In the previous section, the goal was to identify the minimum number of flavors Ncritf needed
to impede confinement and spontaneous chiral symmetry breaking in SU(Nc) gauge theory, thereby
allowing the formation of an IR fixed point. Just below this critical number of flavors, it is plausible
that Yang-Mills exhibits behavior at intermediate scales that is more like the physics of the non-
Abelian Coulomb phase than of QCD. Of course, at very long distances, the theory must eventually
confine otherwise it would be inside the conformal window. Such behavior is called “walking”
because the renormalized coupling is expected to run much slower or “walk” when compared to
QCD [56–60].

The main feature of walking theories that is of interest to model builders is that the pseu-
doscalar decay constant f" should be much smaller than the chiral condensate 〈qq〉, in sharp
contrast to QCD where the two quantities are of roughly the same order, e.g. 〈qq〉/ f2" ≈ 25. In
technicolor, for example, the scale of the Higgs VEV is set by the pseudoscalar decay constant but
the mass scale of technihadrons, including any pseudo Nambu-Goldstone (NG) bosons are set by
the much higher chiral condensate. If such a model were realized in Nature, no new resonances
would be observed (including the Higgs) below the lowest technivector meson (!T ) which is still
too heavy to be observed directly at the Tevatron. See the review by Hill and Simmons [2] for
details.

Another potentially interesting feature of a walking Yang-Mills gauge theory is that the spec-
trum of vector and axial-vector meson resonances may be significantly different than QCD, and
perhaps even inverted [61]. Such an inverted spectrum would give rise to a negative S parameter
in contrast to the QCD-like behavior where S increases with the number of flavors. Thus, with-
out detailed knowledge about the low energy spectrum of a walking theory, precision electroweak
constraints do not apply because they assume a QCD-like spectrum.
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Figure 4: A cartoon of the dynamical scales of SU(N) Yang-Mills. g(L) is a typical renormalized coupling.
gc is the renormalized coupling required to trigger spontaneous chiral symmetry breaking (S+SB). L c is
the distance scale associated with S+SB. LI is the scale of the inflection point. The curves are various
Nf increasing from left to right. The rightmost curve is within the conformal window. A walking theory
dynamically generates both scales LI and Lc.

5. HIGHER FERMION REPRESENTATIONS IN SU(N) YANG-MILLS GAUGE
THEORY

Recently, there has been a lot of interest in SU(Nc) Yang-Mills theories with Nf fermions in
higher representations of the gauge group. As with fermions in the fundamental representation, it
is expected that the theories confine if Nf < Ncf , are governed by an IRFP if Ncf < Nf < Naff (the
conformal window), and asymptotic freedom is lost if Nf > Naff . Recent predictions of the extent
of these conformal windows, shown in Fig. 5 [62], can now be tested by lattice methods.

There has been interest in the past [63–70] in the SU(3) theory with two Dirac flavors in the
adjoint representation because of the possibility of two distinct finite temperature phase transitions.
At higher temperatures, SU(2Nf ) chiral symmetry will break to SO(2Nf ) but the global Z(Nc)
center symmetry of the gauge action will remain unbroken until lower temperatures. This theory is
apparently outside the conformal window although not much is known about the zero temperature,
low energy effective description.

Two years ago, there were some preliminary calculations done by Catterall and Sannino [71]
studying SU(2) Yang-Mills with Nf = 2 flavors of adjoint fermions. In the past year, they have
extended their work with new collaborators [72]. Two other groups have also presented new cal-
culations for this theory and presented their work at this meeting [73–77]. It is reassuring to see
a great deal of consistency amongst the groups as to the results of specific calculations. However,
larger volume calculations are needed to bound the size of finite volume effects.

Two other groups also presented first results on SU(3) Yang-Mills with Nf = 2 flavors of
fermions in the two-index symmetric, or sextet, representation. DeGrand and Svetitsky [78–81]
presented evidence using the Wilson fermion formulation that the low energy behavior of the the-

12
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Figure 5: Zero temperature phase diagram for SU(N) Yang-Mills gauge theories with Dirac fermions in
various color representations, taken from Ref. [62]. Representations from top to bottom are fundamental
(grey), two-index antisymmetric (blue), two-index symmetric (red), and adjoint (green). Shaded regions
are estimates of the conformal windows. Dashed curves indicate where the two-loop fixed point coupling
diverges.

ory is governed by an IRFP on the basis of the running of the renormalized coupling in the SF
scheme, similar to the case of Nf = 12 flavors of fermions in the fundamental representation de-
scribed in Sec. 4.3. Their results are quite interesting. Further calculations are done closer to the
continuum limit would be welcome, perhaps for L/a= 16 as was typical for QCD calculations done
by the ALPHA collaboration. Nógrádi presented preliminary results [82] for an epsilon-regime cal-
culation of eigenvalue distributions for the same theory using the overlap fermion formulation. We
believe the same comments regarding the epsilon-regime calculation at twelve flavors apply here
and look forward to their results with dynamical fermions.

Much has been made of the fact that the conformal window is likely to extend to much lower
values of Ncf than is the case for the fundamental representation and that this has implications for
the value of the S parameter and the possibility of walking behavior. It is reasonable to expect that
the low energy dynamics of these theories will be quite different than QCD and that naive estimates
for the S parameter are likely to be unreliable, so we should wait for a direct calculation of the S
parameter in these theories before drawing any conclusion about viability given the precision EW
constraints.

Finally, walking dynamics are useful for model builders because it produces condensates〈
QQ

〉
that are enhanced relative to their natural scale F" as described in Sec. 4.4. This allows

the breaking of ETC gauge symmetry to be pushed to high scales to naturally suppress FCNCs
while still allowing for reasonable masses for standard model fermions. We are unaware of any
ETC model involving technifermions in higher representations. It would be interesting to see to
what extent the walking mechanism will be necessary and/or useful in an ETC context should the
LHC discover DEWSB by higher representation fermions.
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A. Flavor Dependence of Finite Temperature Transition

Since the last comprehensive review of the flavor dependence of the finite temperature tran-
sition (including Nf ≥ 4) was two decades ago [83], it seems appropriate to revise and extend the
summary tables here for the bare critical coupling (c vs. temporal extent Nt , and where possible,
the critical temperature Tc in dimensionful units. Until recently, the preferred action for these stud-
ies were the SU(3) Wilson gauge action and the unimproved Kogut-Susskind staggered fermion
action. For Nf not a multiple of four, some form of the rooting trick was applied.

Table 1: Summary of critical temperature calculations for SU(3)
Yang-Mills with Nf=0–18 flavors, using the unimproved Wilson
gauge action and Kogut-Susskind staggered fermion action.

Nf Nt Ns am (c Tc (MeV) refs
0 4 16 * 5.6908(2) 290.35(14) [84]
0 4 * * 5.69254(24) 291.54(16) [85]
0 4 * * 5.6925(2) 291.52(14) [84]
0 6 32 * 5.8938(11) 293.47(59) [84]
0 6 * * 5.89405(51) 293.60(27) [85]
0 6 * * 5.8941(5) 293.63(27) [84]
0 8 32 * 6.0609(9) 292.01(42) [84]
0 8 * * ≈ 6.0625 ≈ 292.75 [84]
0 12 32 * 6.3331(13) 290.94(52) [84]
0 12 * * ≈ 6.3384 ≈ 293.09 [84]
1 4 8 0.05 5.475(5) [86, 87]
1 4 8 0.05 5.48 [88]
1 4 8 0.1 5.51(1) [86, 87]
1 4 8 0.1 5.53(1) [89]
1 4 8 0.2 5.57(1) [86, 87]
1 4 8 0.4 5.63(1) [86, 87]

Continued on next page
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Continued from previous page
Nf Nt Ns am (c Tc (MeV) refs

2 4 16 0.01 5.265(5) 153.6(1.7) [90]
2 4 8 0.0125 5.269(2) 153.3(7) [91]
2 4 12 0.0125 5.271(2) 154.0(7) [91]
2 4 8 0.025 5.286(2) 150.8(6) [91]
2 4 8 0.025 5.2875 151.3 [92, 93]
2 4 12 0.025 5.288(2) 151.4(6) [91]
2 4 16 0.025 5.291(1) 152.4(3) [90]
2 4 8 0.05 5.34(1) 151.5(3) [87]
2 4 8 0.05 5.32 146.5 [92, 93]
2 4 8 0.1 5.3825(25) 138.8(4) [87]
2 4 8 0.1 5.375 137.7 [92, 93]
2 4 8 0.1 5.3825(50) 138.8(7) [89]
2 4 12 0.1 5.376(3) 137.8(4) [89]
2 6 12 0.0125 5.415 144.1 [94]
2 6 12 0.025 5.445 140.8 [94]
2 6 12 0.025 5.4375 138.5 [93]
2 6 12 0.05 5.47 125.4 [93]
2 6 12 0.1 5.525 106.0 [93]
2 8 16 0.004 5.43–5.53 121–165 [95]
2 8 16 0.00625 5.475–5.5 135–145 [96]
2 8 16 0.0125 5.54(2) 151(9) [97]
2 12 24 0.008 5.675(25) 168(15) [98]
2 12 24 0.016 5.775(25) 186(13) [98]
3 4 16 0.01 5.105(1) [99]
3 4 16 0.02 5.1235 [100]
3 4 8 0.025 ∼ 5.1 [101]
3 4 16 0.025 5.132 [90, 99, 100]
3 4 32 0.025 5.132 [100]
3 4 16 0.03 5.1396 [99, 102]
3 4 16 0.0325 5.1396 [102]
3 4 16 0.035 5.1505(5) [100, 102]
3 4 16 0.04 5.1593 [99, 102]
3 4 8 0.1 5.25–5.3 [103]
3 4 8 0.1 5.30(5) [104]
3 4 8 0.2 5.35(5) [104]
4 4 16 0.01 4.95 [105]
4 4 8 0.0125 4.919(6) [106]
4 4 8 0.025 4.94(1) [106]

Continued on next page
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Continued from previous page
Nf Nt Ns am (c Tc (MeV) refs
4 4 8 0.025 ∼ 5.03 [101]
4 4 8 0.025 4.983(3) [91]
4 4 16 0.025 4.99 [105]
4 4 8 0.0375 4.99(1) [106]
4 4 16 0.0375 5.02 [105]
4 4 16 0.05 5.04 [105]
4 4 8 0.1 5.05–5.15 [107]
4 6 16 0.01 5.08 [105]
4 6 10 0.025 5.125(25) [106]
4 6 16 0.025 5.13 [105]
4 8 16 0.01 5.15(5) 93(15) [108]
8 4 16 0.015 4.58(1) [35]
8 6 16 0.015 4.71(1) [35]
8 8 16 0.015 4.73(1) [35]
8 16 16 0.015 4.73(1) [35]
10 4 8 0.1 4.70(10) [86]
10 4 8 0.2 4.85(5) [86]
10 4 8 0.4 5.15(1) [86]
10 4 8 0.6 5.35(5) [86]
10 4 8 1.0 5.60(10) [86]
12 4 8 0.1 4.50(10) [86]
16 6 16 0.1 4.11–4.13 [33]
16 12 12 0.1 4.11–4.13 [33]
16 8 16 0.1 4.11–4.13 [33]
18 4 8 0.1 4.25(15) [86]

Table 2: Summary of scale setting calculations for SU(3) Yang-
Mills with Nf=3–16 flavors, using the unimproved Wilson gauge
action and Kogut-Susskind staggered fermion action. Empirical
interpolating functions are available for Nf = 0 [109] and Nf = 2
[110].

Nf ( m Ns Nt r0/a am! amN refs
3 5.115 0.015 8 32 2.10(30) [111, 112]
3 5.1235 0.02 8 32 1.78(21) [111, 112]

Continued on next page
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Continued from previous page
Nf ( m Ns Nt r0/a am! amN refs
3 5.132 0.025 8 32 1.38(17) 1.300(14) [100, 111, 112]
3 5.1458 0.033 16 16 1.387(38) [102]
3 5.151 0.035 8 32 1.51(19) 1.313(11) [100, 111, 112]
3 5.3 0.01 16 32 3.9(1.0) [111, 112]
4 5.15 0.01 16 24 0.75(2) 1.10(6) [113, 114]
4 5.2 0.01 12 24 0.96(5) 1.30(5) [115, 116]
4 5.2 0.025 12 24 1.04(3) 1.58(4) [115, 116]
4 5.2 0.05 12 24 1.12(2) 1.76(2) [115, 116]
4 5.2 0.075 12 24 1.24(2) 1.90(2) [115, 116]
4 5.35 0.01 12 24 0.695(35) 1.15(7) [115, 117]
4 5.35 0.01 16 24 0.52(1) 0.77(3) [113, 114, 117]
4 5.35 0.025 12 24 0.83(2) 1.36(1) [115, 116]
4 5.35 0.05 12 24 0.97(6) 1.60(1) [115, 116]
4 5.35 0.075 12 24 1.12(2) 1.73(6) [115, 116]
4 5.4 0.01 16 32 0.438(8) 0.690(21) [37, 118]
4 5.4 0.01 24 32 0.3742(44) 0.5688(76) [37, 118]
4 5.4 0.015 16 32 0.4736(59) 0.7512(94) [37, 118]
4 5.4 0.02 16 32 0.5008(28) 0.7745(51) [37, 118]
4 5.4 0.02 24 32 0.4872(26) 0.7415(54) [37, 118]
8 4.65 0.015 16 32 0.522(7) 0.872(10) [35]
8 5.0 0.015 16 32 0.484(7) 0.807(7) [35]
16 4.125 0.1 1.210(8) 1.90(1) [33]
16 4.25 0.1 1.123(6) 1.90(1) [33]
16 4.375 0.1 1.079(4) 1.737(3) [33]
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