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We compute moments of distribution amplitudes using gauge configurations with two flavors
of clover fermions from QCDSF/DIK and operators which are optimized with respect to their
behavior under the lattice symmetries. The knowledge of these quantities helps in understanding
the internal structure of hadrons and in the analysis of (semi-)exclusive processes. We present
results for the nucleon distribution amplitude which suggest that the asymmetries (the deviations
from the asymptotic form) are smaller than indicated by sum rule calculations. Using the same
approach we were also able to calculate the same quantities for the N?(1535), the parity partner
of the nucleon. These results show a stronger deviation from the asymptotic form.
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1. Introduction

Distribution amplitudes [1, 2, 3] describe the structure of hadrons in terms of valence quark
Fock states at small transverse separation and are required in the calculation of hard (semi)exclusive
processes. A simple picture is obtained at very large values of the momentum transfer. In this limit
the process factorizes and, for example, the magnetic Sachs form factor of the nucleon GM(Q2) can
be expressed as a convolution of the hard scattering kernel h(xi,yi,Q2) and the leading-twist quark
distribution amplitude in the nucleon ϕ(xi,Q2) [3],

GM(Q2) = f 2
N

∫ 1

0
[dx]

∫ 1

0
[dy] ϕ

?(yi,Q2)h(xi,yi,Q2)ϕ(xi,Q2), (1.1)

where [dx] = dx1dx2dx3δ (1−∑
3
i=1 xi), and −Q2 is the squared momentum transfer in the hard

scattering process. However, in the kinematic region 1GeV2 < Q2 < 10GeV2, which has attracted
a lot of interest recently due to the JLAB data [4, 5] for GM, the situation is more complicated.
Here calculations are possible, e.g., within the light-cone sum rule approach [6, 7]. They indicate
that higher-twist distribution amplitudes become important while higher Fock states do not play a
significant role. In any case, the distribution amplitudes are needed as input.

As advocated in the pioneering work [8], lattice QCD is well suited to calculate such non-
perturbative quantities. Our recent calculation [9] of moments of the nucleon distribution ampli-
tudes shows that they can be determined reasonably well on the lattice. Furthermore, using the
same methods we were able to determine distribution amplitudes of the nucleon parity partner
N?(1535) with comparable accuracy. We find that the asymmetry of the leading-twist amplitude of
the nucleon is smaller than in QCD sum rule calculations, in agreement with light-cone sum rules
[10] and quark models [11], which suggest a less asymmetric form. On the other hand, our re-
sults for N?(1535) suggest that the asymmetry for the parity partner of the nucleon is considerably
enhanced.

2. Basics

In this section we work in Minkowski space. The leading-twist distribution amplitudes for
octet baryons and in particular nucleon distribution amplitudes were introduced within the classical
framework of hard exclusive processes in [1, 2, 3] The starting point for baryons is the matrix
element of a trilocal quark operator, which can be written to leading-twist accuracy in terms of
three invariant functions V , A and T [12]:

〈0|
[

Pexp
(

ig
∫ z3

z1

Aµ(σ)dσ
µ

)
fα(z1)

]a [
Pexp

(
ig

∫ z3

z2

Aν(τ)dτ
ν

)
gβ (z2)

]b

hc
γ(z3) |p〉εabc

=
1
4

{
(p · γC)αβ (γ5N)γ fVV (zi · p)+(p · γγ5C)αβ Nγ fAA(zi · p)+(iσµν pνC)αβ (γµ

γ5N)γ fT T (zi · p)
}

.

Here a,b,c are color indices, |p〉 denotes a baryon state with momentum p and f , g, h are quark
fields. We consider these matrix elements for the space time separation of the quarks on the light
cone with zi = aiz (z2 = 0) and ∑i ai = 1. On the r.h.s. C is the charge conjugation matrix, f(V,A,T )

are normalization constants of the leading-twist distribution amplitudes and N is the baryon spinor.
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In momentum space we have

V (xi) ≡
∫

V (zi · p)
3

∏
i=1

exp(ixi(zi · p))
d(zi · p)

2π
, V (xi) ≡V (x1,x2,x3), (2.1)

and similarly for A(xi) and T (xi). The distribution amplitudes V (xi), A(xi) and T (xi) describe the
quark distribution inside the baryon as functions of the longitudinal momentum fractions xi. They
also depend on the renormalization scale.

The moments of distribution amplitudes V lmn =
∫ 1

0 [dx] xl
1xm

2 xn
3 V (x1,x2,x3) are related to ma-

trix elements of local operators such as

V ρ l̄m̄n̄
τ (0) ≡V

ρ(λ1···λl)(µ1···µm)(ν1···νn)
τ (0) = ε

abc
[
ilDλ1 . . .Dλl f (0)

]a

α

(Cγ
ρ)αβ

× [imDµ1 . . .Dµmg(0)]b
β

[inDν1 . . .Dνn(γ5h(0))]c
τ
, (2.2)

by PLTW 〈0|V ρ l̄m̄n̄
τ (0)|p〉 = − fVV lmn pρ pl̄ pm̄ pn̄Nτ(p), with similar relations for A and T , see, e.g.,

[8]. The multiindex l̄m̄n̄ with l̄ ≡ λ1 . . .λl and similarly for m̄ and n̄ denotes the Lorentz structure
given by the covariant derivatives Dµ = ∂µ − igAµ on the r.h.s. of eq. (2.2). The indices l,m,n
(without bars) are the total number of derivatives acting on the first, second and third quark, re-
spectively. The index ρ corresponds to the uncontracted Lorentz index of the gamma matrices
in the operators. The leading-twist projection, PLTW , can be achieved, e.g., by symmetrization in
Lorentz indices and subtraction of traces.

Since in the nucleon the two quarks f and g are of the same flavor we have additional relations
for the moments of the distribution amplitudes,

V lmn = V mln, Almn = −Amln, T lmn = T mln, (2.3)

which can be restored from the combination

φ
lmn =

1
3
(V lmn −Almn +2T lnm) (2.4)

by taking into account the isospin symmetry. Hence we have only one independent distribution
amplitude. In particular the normalization constants are equal, fN = fV = fA = fT , where fN is the
nucleon wave function normalization constant defined by the choice φ 000 = 1. For the parity partner
of the nucleon N?(1535) we have exactly the same relations. The combination ϕ lmn = V lmn−Almn,
often used in sum rule calculations, can easily be obtained by the relation ϕ lmn = 2φ lmn − φ nml.

Due to momentum conservation we have additional relations between lower and higher moments
of the distribution amplitudes: φ lmn = φ (l+1)mn +φ l(m+1)n +φ lm(n+1). In particular this implies

1 = φ
000 = φ

100 +φ
010 +φ

001 = φ
200 +φ

020 +φ
002 +2(φ 011 +φ

101 +φ
110) = . . . (2.5)

In the case of next-to-leading twist distribution amplitudes we restrict ourselves to operators
without derivatives. Then only two additional constants, V 0

3 and T 0
3 , appear [13], which determine

the normalization of the twist-four distribution amplitudes. The combinations λ1 = V 0
1 −4V 0

3 and
λ2 = 6(V 0

1 −4T 0
3 ) are also used in the literature. They describe the coupling to the nucleon of two

independent nucleon interpolating fields used in the QCD sum rule approach. One of the operators,
Lτ , was suggested in [14] and the other, Mτ , in [15]:

Lτ(0) = ε
abc

[
uaT (0)Cγ

ρ ub(0)
]
× (γ5γρ dc(0))τ , Mτ(0) = ε

abc
[
uaT (0)Cσ

µν ub(0)
]
× (γ5σµν dc(0))τ .
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Their matrix elements are given by

〈0|Lτ(0)|p〉 = λ1mNNτ , 〈0|Mτ(0)|p〉 = λ2mNNτ . (2.6)

3. Calculation on the Lattice

It is straightforward to translate the relevant operators to Euclidean space. However, due to the
discretization of space-time, the mixing pattern of the operators on the lattice is more complicated
than in the continuum. It is determined by the transformation behavior of the operators under the
(spinorial) symmetry group of our hypercubic lattice. As operators belonging to inequivalent irre-
ducible representations cannot mix, we derive our operators from irreducibly transforming multi-
plets of three-quark operators [16, 17] in order to reduce the amount of mixing to a minimum. These
irreducible multiplets constitute also the basis for the renormalization of our operators, which is
performed nonperturbatively in an RI-MOM-like scheme. In this procedure, the mixing with “total
derivatives” is automatically taken into account. The numerical results presented in this work were
obtained using QCDSF/DIK configurations generated with the standard Wilson gauge action and
two flavors of nonperturbatively improved Wilson fermions (clover fermions). The gauge coupling
used was β = 5.40, which corresponds to a ≈ 0.067fm via a Sommer parameter of r0 = 0.467fm
[18, 19]. The lattice size was 243 ×48 with pion masses down to 420MeV.

In the case of the moments considered in this work we can avoid the particularly nasty mixing
with lower-dimensional operators completely. Note that the operators V ρ l̄m̄n̄

τ , A ρ l̄m̄n̄
τ and T ρ l̄m̄n̄

τ

with different multi-indices ρ l̄m̄n̄ but the same lmn are related to the same moments V lmn, Almn and
T lmn, and we make use of this fact not only in order to minimize the mixing problems but also in
order to reduce the statistical noise by considering suitable linear combinations.

For the operators without derivatives, i.e., the matrix elements λ1, λ2 and fN , we have per-
formed a joint fit of all contributing correlators to obtain the values at the simulated quark masses.
As these are larger than the physical masses a chiral extrapolation to the physical point is required
in the end. To the best of our knowledge there are no results from chiral perturbation theory to
guide this extrapolation. Therefore we have adopted a more phenomenological approach aiming
at linear (in m2

π ) fits to our data. It turns out that the ratios fN/m2
N and λi/mN are particularly well

suited for this purpose. In order to estimate the systematic error due to our linear extrapolation, we
also consider a chiral extrapolation including a term quadratic in m2

π and take the difference as the
systematic error. The results in the MS scheme at a scale of 2GeV are given in Table 1. Note that
2λ1 ≈ −λ2 for nucleon, a relation that is expected to hold in the nonrelativistic limit due to Fierz
identities. However, for N?(1535) we observe a strong deviation from this relation.

For the higher moments one can proceed in the same way and the constraint (2.5) is satisfied
very well. However, the statistical errors in this approach are too large to allow an accurate deter-
mination of the (particularly interesting) asymmetries. We achieved smaller errors by calculating
the ratios Rlmn = φ lmn/Si where

S1 = φ
100 +φ

010 +φ
001 for l +m+n = 1, (3.1)

S2 = 2(φ 011 +φ
101 +φ

110)+φ
200 +φ

020 +φ
002 for l +m+n = 2. (3.2)
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These ratios are extrapolated linearly to the physical masses. Again, we extrapolate all results also
quadratically in m2

π and take the difference as an estimate for the systematic error of the chiral
extrapolation. Requiring that the constraint (2.5) be satisfied for the renormalized values we can
finally extract the moments from the ratios. These results are summarized in Table 1. In Table 2 we
compare the moments ϕ lmn as obtained from φ lmn with some other estimates. From these values
we see that the asymmetry of the N?(1535) distribution amplitude is more pronounced compared
to the nucleon and is mostly driven by the first moments. However, in both cases we have the
approximate symmetry ϕ lmn ≈ ϕ lnm.

Asympt. LAT N LAT N?(1535)

fN ·103[GeV2] 3.144(61)(29)(54) 4.417(114)(215)(2)
−λ1 ·103[GeV2] 38.72(70)(43)(106) 40.88(110)(778)(57)
λ2 ·103[GeV2] 76.23(139)(84)(207) 208.9(47)(384)(42)

φ 100 1
3 ≈ 0.333 0.3638(11)(68)(3) 0.4007(14)(48)(12)

φ 010 1
3 ≈ 0.333 0.3023(10)(42)(5) 0.2610(18)(13)(16)

φ 001 1
3 ≈ 0.333 0.3339(9)(26)(2) 0.3384(11)(35)(4)

φ 011 1
7 ≈ 0.143 0.0724(18)(82)(70) 0.0706(22)(37)(66)

φ 101 1
7 ≈ 0.143 0.1136(17)(32)(21) 0.1213(23)(21)(16)

φ 110 1
7 ≈ 0.143 0.0937(16)(3)(38) 0.0943(24)(17)(38)

φ 200 2
21 ≈ 0.095 0.1629(28)(7)(68) 0.1825(35)(4)(56)

φ 020 2
21 ≈ 0.095 0.1289(27)(37)(51) 0.0962(37)(68)(119)

φ 002 2
21 ≈ 0.095 0.1488(32)(77)(73) 0.1429(34)(29)(75)

Table 1: Comparison of our lattice results (LAT) as obtained from QCDSF/DIK configurations at β = 5.40
for the nucleon (N) and N?(1535) at µ2 = 4GeV2 . The first error is statistical, the second (third) error
represents the uncertainty due to the chiral extrapolation (renormalization). The systematic errors should be
considered with due caution, see the text for their determination.

Asympt. QCD-SR BK BLW LAT N LAT N?(1535)

fN ·103[GeV2] 5.0(5) 6.64 5.0(5) 3.234(63)(86) 4.544(117)(223)
−λ1 ·103[GeV2] 27(9) 27(9) 35.57(65)(136) 37.55(101)(768)
λ2 ·103[GeV2] 54(19) 54(19) 70.02(128)(268) 191.9(44)(391)

ϕ100 1
3 ≈ 0.333 0.560(60) 0.38 0.415 0.3999(37)(139) 0.4765(33)(155)

ϕ010 1
3 ≈ 0.333 0.192(12) 0.31 0.285 0.2986(11)(52) 0.2523(20)(32)

ϕ001 1
3 ≈ 0.333 0.229(29) 0.31 0.300 0.3015(32)(106) 0.2712(41)(136)

ϕ200 1
7 ≈ 0.143 0.350(70) 0.18 0.212 0.1816(64)(212) 0.2274(89)(307)

ϕ020 1
7 ≈ 0.143 0.084(19) 0.13 0.123 0.1281(32)(106) 0.0915(45)(224)

ϕ002 1
7 ≈ 0.143 0.109(19) 0.13 0.132 0.1311(113)(382) 0.1034(160)(584)

ϕ011 2
21 ≈ 0.095 −0.030(30) 0.08 0.053 0.0613(89)(319) 0.0398(132)(497)

ϕ101 2
21 ≈ 0.095 0.102(12) 0.10 0.097 0.1091(41)(152) 0.1281(56)(131)

ϕ110 2
21 ≈ 0.095 0.090(10) 0.10 0.093 0.1092(67)(219) 0.1210(101)(304)

Table 2: Comparison of our lattice results (LAT) for the nucleon N and N?(1535) as obtained from
QCDSF/DIK configurations at β = 5.40 using φ 010, φ 001, φ 110, φ 200 and φ 020 in Table 1 to selected sum
rule results [20] (QCDSR) and the phenomenological estimates [10] (BLW) and [11] (BK) at the scale
µ2 = 1GeV2.
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(a) (b)

Figure 1: Barycentric plot of the models of the distribution amplitudes for nucleon (a) and N?(1535) (b) at
µ = 1GeV using the central values of the lattice results. The lines of constant x1, x2 and x3 are parallel to
the sides of the triangle labelled by x2, x3 and x1, respectively.

4. Model for Distribution Amplitudes

Let us now expand the distribution amplitude in terms of orthogonal polynomials Pn j chosen
such that the one-loop mixing matrix is diagonal [21]:

ϕ(xi,µ) = 120x1x2x3

N

∑
n=0

n

∑
j=0

cn j(µ0)Pn j(xi)
(

αs(µ)
αs(µ0)

)ωn j

.

Taking N = 2 and calculating the coefficients cn j(µ0) from an independent subset of the moments
φ lmn(µ0 = 2GeV), we obtain a model function for the distribution amplitude presented in Fig. 1(a).
While the (totally symmetric) asymptotic amplitude 120x1x2x3 has a maximum for x1 = x2 = x3 =
1/3, inclusion of the first moments (i.e., choosing N = 1) moves this maximum in the case of the
nucleon to x1 ≈ 0.46, x2 ≈ 0.27, x3 ≈ 0.27 giving the first quark substantially more momentum
than the others. The second moments then turn this single maximum into the two local maxima
in Fig. 1(a). This also happens in the case of N?(1535). However the influence of the second
moments on the form of the DA is reduced compared to the nucleon due to the stronger asymmetry
in the first moments. The approximate symmetry in x2 and x3 seen in both cases is due to the
approximate symmetry ϕ lmn ≈ ϕ lnm of our results. It is also seen in QCD sum rule calculations
for the nucleon as well as in several models such as BLW and BK. Since higher-order polynomials
have been disregarded, Figs. 1(a) and 1(b) should be interpreted with due caution.
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