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We report results of the investigation of physics at finite chemical potential using the method

of Taylor expansion of the free energy for staggered quarks with mπ ≃ 210 MeV onNt = 6

lattices. When the spatial volume is(4/T E)3 we estimate that the location of the critical end

point is atT E/Tc ≃ 0.94(1) andµE
B /T E ≃ 1.8(1). This is to be compared to an earlier estimate

of T E/Tc ≃ 0.95(1) andµE
B /T E ≃ 1.3(3) made on similar spatial volumes and quark masses but

with Nt = 4.
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Figure 1: The peak value ofχL grows slower thanN3
s , hence standard finite size scaling arguments indicate

that this is not a first order phase transition.

1. Technical preliminaries

We report results from a simulation of two flavours of staggered quarks with massm/Tc =

0.1 (corresponding tomπ/mρ = 0.3) on lattices of sizes 6× 123, 6× 183 and 6× 243 [1]. The
simulations were performed using the R-algorithm. Most of trajectories were of length 1 MD
time unit and used time steps of 0.01 units. In tests with time steps of 0.001 units, we found that
bulk quantities such as plaquettes, Polyakov loops and the quark condensate remained unchanged.
Increasing the trajectory length to 3 MD time units also made no changes to these quantities.
However, the longer trajectories gave shorter autocorrelation times.

The finite temperature cross over coupling was monitored using the Polyakovloop suscepti-
bility, χL and two operators which enter the quark number susceptibilities (QNS), namely 〈O22〉c

and〈O44〉c. All these measures were compatible within the precision of our measurements.We
found βc = 5.425(5). Previous results bracket this value: form/Tc = 0.15 it was reported that
βc = 5.438(40) [2] and form/Tc = 0.075 it was found thatβc was in the range 5.41–5.43 [3]. We
found that 3-loop scaling worked reasonably well betweenNt = 4 and 6. Standard finite size scal-
ing analysis indicated that the transition is not of first order (see Figure 1). Distinctions between a
second order transition and a cross over requires larger spatial volumes.

At each temperature we generated at least 100 statistically independent gauge configurations,
and in the region nearTc we around 200 such statistically independent configurations. For each
configuration we measured all the QNS upto the eighth order using a noisy determination with
500 random vectors. Twenty matrix inversions are required to do this for each random vector.
Nevertheless, the CPU time spent in these measurements were an order of magnitude smaller than
that spent in generating the configurations.
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Figure 2: The off-diagonal and diagonal quark number susceptibilities onNt × (4Nt)
3 lattices.

2. Quark number susceptibilties

The off-diagonal QNS,χ11 is shown in Figure 2. There is no evidence of lattice spacing
effects, nor of a crossover atTc. The diagonal QNS is also shown in the same figure, and shows
finite lattice spacing effects. There is a rapid crossover nearTc. This is due to the operatorO2

which appears in the diagonal QNS but not in the off-diagonal.

Hence the fourth order QNS which containsO22 should peak. This is exactly what we see.
Also, the operatorO4, which is another contribution to the fourth order QNS do not peak, but show
a cross over. These two kinds of behaviour are also exhibited in Figure 2.

By an extension of this argument, the eighth order QNS which containO44 shopuld peak,
and the peak is shown in Figure 2. The operatorO6 which is one of the contributions to the sixth
order QNS, however, does not show a simple crossover, but exhibits interesting structure belowTc,
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Figure 3: The series coefficients in the Taylor expansion ofχB (normalized by appropriate powers ofT to
make them dimensionless) on lattice sizesLT = 4 for Nt = 6 (first panel) andNt = 4 (second panel). Note
that there is a small window of temperature, a little belowTc, in which all the measured series coefficients
are positive.

as also shown in Figure 2. The same is true of the operatorO8, which is not shown. Hence the
susceptibilities of these operators need not peak atTc. These patterns were noticed earlier in studies
with Nt = 4 lattices [4].

Figure 2 also shows that the peaks ofO22 andO44 occur at the same value ofT where the
peak ofχL occurs (which was used to set the temperature scale used here). Hencewith these
three measurements we find the same cross over coupling, at least within the precision of our
measurements.

These figures also show that measurements of the most important matrix elementswhich con-
tribute to the QNS up to the eighth order are under control when 500 randomvectors are used for
the measurements.

Finally, in Figure 3 we collect together the series coefficients in the Taylor expansion ofµB.
For bothNt = 6 and 4, we find that there is a small window of temperatures where all the measured
series coefficients are positive. Also note that at high temperatures only the first two coefficients
are appreciable.

3. The critical end point

Identifying a critical point through finite lattice computations is hard even whendirect simula-
tions can be performed, and there is a well-known theory of critical phenomena. In our case direct
simulations are impossible and series expansions have to be resorted to.

The radius of convergence of the series is the point at which it breaks down: the critical point
must be located at one such point of break down. Since the series in question is in powers ofµ2

B,
a QCD critical point occurs only when the series breaks down at a positive value ofµ2

B, implying
that all coefficients must be positive. We find that at the lowest temperatures which we study, the
series coefficients are not all positive. Also at high temperatures the coefficients change sign. As a
result, there is only a small window of temperatures where the critical end point can lie.

Of course, any numerical method will study only a finite number of terms and therefore can
give only a finite number of estimators of the radius of convergence. We findthat, among the tem-
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Figure 4: The radius of convergence at three neighbouring temperatures in our scan. A critical point can
only be deduced from the first. The filled symbols indicate theestimator of the radius of convergence which
is (χ(0)/χ(n))1/n. Open symbols stand for a different estimator, which is

√

χ(n−1)/χ(n+1). Hereχ(n) is the
n-th coefficient in the Taylor expansion ofχB.
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Figure 5: The volume dependence of estimators of the radius of convergence atT E . The behaviour is
consistent with expectations at a critical point. The open and filled symbols have the same meaning as in
Figure 4.

peratures we studied, there is only one where the successive estimators are statistically consistent
with each other 4. At this temperature the same value for the radius of convergence is also obtained
with two different estimators. Therefore we identify this temperature withT E . Of course, it is
possible that at some other temperature the estimate of the radius of convergence only stabilizes
after several more terms. Further work is needed to rule out such pathologies.

If our identification of the critical end point has any merit, then we should be able to check for
finite volume effects. Since there is no true criticality at finite spatial size,L, we would expect that
at T E , estimates of the radius of convergence would seem to stabilize, but at somecritical order
of the expansion,n∗(L), it would suddenly begin to increase with the order of the expansion. Of
course,n∗(L) should increase withL, going to infinity asL goes to infinity, so that a stable value
of the radius of convergence is obtained in the thermodynamic limit. We show in Figure 5 that this
behaviour is seen at the point we identify asT E .

Our estimate of the critical end point with lattice cutoff ofa = 1/(6T E), a finite lattice of
spatial sizeL = 4/T E , when the quark mass is tuned to givemπ = 230 MeV, is

T E/Tc = 0.94±0.01 and µE
B /T E = 1.8±0.1. (3.1)

In an earlier computation witha = 1/(4T E), where the lattice size and quark mass were kept at this
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Figure 6: Series expansions to different orders fail to agree; nor do they indicate the presence of the critical
point. Padé approximants constructed using the same coefficients do much better at predicting physical
quantities. Both figures concernχB at T −0.94Tc.

value [5], we had found the sameT E/Tc, but obtainedµE
B /T E = 1.3±0.3. We had also used larger

volumes in that study and on extrapolatingL → ∞ we found thatµE
B /T E ≃ 1.1. If the same pattern

recurs at the smaller cutoff, then the result quoted here would provide anupper bound onµE
B /T E .

4. Series expansions and Padé approximants

A finite series expansion is a bad way to extrapolate results to finiteµB, especially when the
series shows signs of breaking down. One needs instead a method of resumming the series. A
well-known method for doing this is to use Padé approximants [6].

The breakdown of the series expansion can be illustrated well enough bytaking the expansion
at T = 0.94Tc. The sum of the first two terms in the series is a quadratic inµB and hence increases
monotonically. The sum of the first three terms is a quartic and increases even faster. There is no
sign of a breakdown atµE

B (Figure 6, and a comparison of the two expansions shows that the series
are only reliable forµB/T ≪ 1.

On the other hand, one could construct Padé approximants out of the sameseries coefficients.
The two corresponding Padé approximants are shown in Figure 6. Thereis good agreement be-
tween the two approximants right upto the singular point. Error propagation inthese computations
require care, and are dealt with in detail in [1].

An interesting point about this concerns the spurious peak inχB atT = Tc. χ(2) has no peak at
Tc but χ(4) has [7]. The truncated seriesχB = χ(2) +χ(4)µ2

B/2 will therefore have a peak atTc, with
the peak growing infinitely high asµB → ∞. This is spurious. A Padé resummed extrapolation will
shift the peak correctly to the critical end point.

5. Conclusions

A computation with two flavours of staggered quarks with the quark mass tunedto givemπ =

230 MeV, with a cutoff 1/a = 6T on lattice sizesLT = 2, 3 and 4 was used to obtain series
coefficients for a Taylor expansion ofχB to sixth order (eighth order forP) and yielded the estimate
of the location of the critical end point given in eq. (3.1). The series expansion coefficients can be
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used to resum the series into Padé approximants and obtain stable predictionsfor various quantities
at finite chemical potential.

The computations reported here were performed on the Cray X1 of the Indian Lattice Gauge
Theory Initiative.
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