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We compute theKℓ3 and pion form factors using partially twisted boundary conditions. The

twists are chosen so that theKℓ3 form factors are calculated directly at zero momentum transfer

(q2 = 0), removing the need for aq2 interpolation, while the pion form factor is determined at

values ofq2 close toq2 = 0. The simulations are performed on an ensemble of the RBC/UKQCD

collaboration’s gauge configurations with Domain Wall Fermions and the Iwaski gauge action

with an inverse lattice spacing of 1.73(3) GeV. Simulating at a single pion mass of 330 MeV, we

find the pion charge radius to be〈r2〉330MeV = 0.354(31) fm2 which, using NLO SU(2) chiral

perturbation theory, translates to a value of〈r2
π〉 = 0.418(31) fm2 for a physical pion. For the

value of theKℓ3 form factor, f +
Kπ(q2), determined directly atq2 = 0, we find a value off +

Kπ(0) =

0.9742(41) at this particular quark mass, which agrees well with our earlier result (0.9774(35))

obtained using the standard, indirect method.
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Kl3 and pion form factors

1. Introduction

Over the last two years as part of our Domain Wall Fermion (DWF) physics programme we
have been looking at theK → πℓνℓ (Kℓ3) form factor at zero momentum transfer. Since the experi-
mental rate forKℓ3 decays is proportional to|Vus|

2| f +
Kπ(0)|2, a lattice calculation of the form factor,

f +
Kπ(q2) at q2 = 0, provides an excellent avenue for the determination of the Cabibbo-Kobayashi-

Maskawa (CKM) [1] quark mixing matrix element,|Vus|.
The uncertainty in the unitarity relation of the CKM matrix|Vud|

2 + |Vus|
2 = 1 (we ignore

|Vub| since this is very small), is dominated by the precision of|Vus|. In Fig. 1 we show the latest
determinations of|Vud| [19] and |Vus| [3]. For comparison, we also show the unitarity relation.
Since it is important to establish unitarity with the best precision possible, it is essential that we
decrease the error in|Vus|.

Vus/Vud

Figure 1: Bands showing the current limits on
|Vud| [19], and|Vus| [3].

The value off +
Kπ(0) used in determining|Vus|

in figure 1 was determined using standard meth-
ods [4, 5] involving periodic boundary conditions
in the recent paper [3]. There, theKℓ3 form fac-
tor is calculated atq2

max = (mK −mπ)2 and sev-
eral negative values ofq2 for a variety of quark
masses. This allows for an interpolation of the
results toq2 = 0. The form factor is then chi-
rally extrapolated to the physical pion and kaon
masses. The final result forf +

Kπ(0) quoted is then
[3] f +

Kπ(0) = 0.9644(33)(34)(14) where the first
error is statistical, and the second and third are es-
timates of the systematic errors due to the choice
of parametrisation for the interpolation and lattice
artefacts, respectively. This gives us a value of
|Vus| = 0.2249(14).

More recently, we have developed a method that uses partially twisted boundary conditions to
calculate theKℓ3 form factor directly atq2 = 0 [6], thereby removing the systematic error due to
the choice of parametrisation for the interpolation inq2. We have also used partially twisted bc’s
to calculate the pion form factor at values ofq2 below the minimum value obtainable with periodic
bc’s. In contrast to recent studies this allows for a direct evaluation of the charge radius of the pion.
The method was developed and tested in [6] and now applied in a simulation with parameters much
closer to the physical point.

In this paper we discuss our findings for the pion form factor from [7] and our progress in im-
proving the precision of our result forf +

Kπ(0) from [3] using partially twisted boundary conditions.

2. Simulation Parameters

The computations are performed using an ensemble with light quark massamu = amd = 0.005
and strange quark massams = 0.04 from a set ofNf = 2+ 1 flavour DWF configurations with
(L/a)3×T/a×Ls = 243×64×16 which were jointly generated by the UKQCD/RBC collabora-
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tions [8] using the QCDOC computer. The gauge configurations were generated with the Iwasaki
gauge action with an inverse lattice spacing ofa−1 = 1.729(28)GeV. The resulting pion and kaon
masses aremπ ≈ 330MeV andmK ≈ 575MeV, respectively.

In this work we use single time-slice stochastic sources [10], for which the elements of the
source are randomly drawn from a distributionD = Z(2)⊗Z(2) which contains randomZ(2)

numbers in both its real and imaginary parts. With sources of this form we findthat the computa-
tional cost of calculating quark propagators is reduced by a factor of 12. For more details on the
simulations, see [7].

3. The Form Factors

Here we briefly outline the main features of our method and we refer the reader to our earlier
papers for more details [3,6,7].

The matrix element of the vector current between initial and final state pseudoscalar mesons
Pi andPf , is in general decomposed into two invariant form factors:

〈Pf (pf )|Vµ |Pi(pi)〉 = f +
PiPf

(q2)(pi + pf )µ + f−PiPf
(q2)(pi − pf )µ , (3.1)

whereq2 = −Q2 = (pi − pf )
2. For K → π, Vµ = s̄γµu, Pi = K andPf = π. For π → π, Vµ =

2
3ūγµu− 1

3d̄γµd, Pi = Pf = π and from vector current conservation,f−ππ(q2) = 0. The form factors
f +
PiPf

(q2) and f−PiPf
(q2) contain the non-perturbative QCD effects and hence are ideally suited for a

determination in lattice QCD.

In a finite volume with spatial extentL and periodic boundary conditions for the quark fields,
momenta are discretised in units of 2π/L. As a result, the minimum non-zero value ofQ2 for the
pion form factor in our simulation isq2

min ≈−0.15 GeV2, while for theK → π form factor

q2 = (EK(~pi)−Eπ(~pf ))
2− (~pi −~pf )

2 . (3.2)

For ~pi = 0 and 2π/L with ~pf = 0, we haveq2 ≈ 0.06 GeV2 and−0.05 GeV2, respectively, pre-
senting the need for an interpolation in order to extract the result of the form factor, f +

Kπ , atq2 = 0.

In order to reach small momentum transfers for the pion form factor andq2 = 0 for theK → π
form factors, we use partially twisted boundary conditions [11,12], combining gauge field config-
urations generated with sea quarks obeying periodic boundary conditions with valence quarks with
twisted boundary conditions [11–17]. The valence quarks,q, satisfy

q(xk +L) = eiθkq(xk), (k = 1,2,3) , (3.3)

where~θ is the twisting angle.

q2 q1

q3

Vµ

Pi Pf

3
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Our method is decribed in detail in [6, 7] and proceeds by setting~θ = 0 for the spectator quark,
denoted byq3 in the above diagram. We are then able to vary the twisting angles,~θi and~θ f , of the
quarks before(q2) and after(q1) the insertion of the current, respectively. The momentum transfer
between the initial and final state mesons is now

q2 = (Ei(~pi ,~θi)−Ef (~pf ,~θ f ))
2− ((~pi +~θi/L)− (~pf +~θ f /L))2 , (3.4)

whereE(~p,~θ) =

√

m2 +(~p+~θ/L)2. Hence it is possible to choose~θi and~θ f such thatq2 = 0,

which from now on we refer to as~θK and~θπ for when we twist a quark in the Kaon and Pion,
respectively.

In order to extract the matrix elements (3.1) from a lattice simulation, we considerratios of
three- and two-point correlation functions. For the pion form factor, weconsider the ratios given
in Eqs. (3.4) and (3.5) in [7], while for theK → π form factors, we consider the following ratios

R1,PiPf (~pi ,~pf ) = 4
√

EiEf

√

CPiPf (t,~pi ,~pf )CPf Pi (t,~pf ,~pi)

CPi (tsink,~pi)CPf (tsink,~pf )
,

R3,PiPf (~pi ,~pf ) = 4
√

EiEf
CPiPf (t,~pi ,~pf )

CPf (tsink,~pf )

√

CPi (tsink−t,~pi)CPf (t,~pf )CPf (tsink,~pf )

CPf (tsink−t,~pf )CPi (t,~pi)CPi (tsink,~pi)
.

(3.5)

We deviate slightly from the method outlined in [6] for extractingf 0
Kπ(0) from the ratios.

Previously we considered only the time-component of the vector current and solved forf 0
Kπ(0) =

f +
Kπ(0) via the linear combination

f 0
Kπ(0) =

Rα,Kπ(~pK ,~0)(mK −Eπ)−Rα,Kπ(~0,~pπ)(EK −mπ)

(EK +mπ)(mK −Eπ)− (mK +Eπ)(EK −mπ)
(α = 1,2,3) . (3.6)

This, however, is just one of many expressions that can be obtained when we solve the system of
simultaneous equations that are obtained when we consider all components of the vector current,
Vµ , rather than justV4 that was considered in [6]

Rα,Kπ(~θK ,~0,V4) = f +
Kπ(0)(EK +mπ)+ f−Kπ(0)(EK −mπ)

Rα,Kπ(~0,~θπ ,V4) = f +
Kπ(0)(mK +Eπ)+ f−Kπ(0)(mK −Eπ)

Rα,Kπ(~θK ,~0,Vi) = f +
Kπ(0)θK,i + f−Kπ(0)θK,i

Rα,Kπ(~0,~θπ ,Vi) = f +
Kπ(0)θπ,i − f−Kπ(0)θπ,i . (3.7)

We can now proceed to solve this overdetermined system of equations viaχ2 minimisation.

4. Pion form factor results

In Fig. 2 we show our results for the form factorf ππ(q2) for a pion withmπ = 330MeV for
a range of values ofq2 both using periodic bc’s and partially twisted bc’s (set A and sets B&C
respectively in the left plot of figure). The vertical dashed line indicatesthe smallest momentum
transfer available on this lattice with periodic bc’s. The (blue) dashed line is the result of a pole-
dominance fit to our data points, while the (red) dot-dashed curve is obtained from the result of
QCDSF [18] evaluated atmπ = 330 MeV.
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Figure 2: f ππ(q2) from a 243×64 lattice withmπ = 330 MeV using partially twisted bc’s.

On the right of Fig. 2 we have a zoom into the lowQ2 = −q2 region. The triangles are our
lattice data points for a pion withmπ = 330MeV, and the magenta diamonds are experimental data
points for the physical pion.

Because our values ofQ2 are very small, we apply NLO chiral perturbation theory (ChPT).
In NLO ChPT, the pion form factor depends only on a single low energy constant (LEC) (Lr

9 for
SU(3), orl r

6 for SU(2))

f ππ
SU(2),NLO(q2) = 1+

1
f 2

[

−2l r
6q2 +4H̃ (m2

π ,q2,µ2)
]

(4.1)

f ππ
SU(3),NLO(q2) = 1+

1

f 2
0

[

4Lr
9q2 +4H̃ (m2

π ,q2,µ2)+2H̃ (m2
K ,q2,µ2)

]

(4.2)

where

H̃ (m2,q2,µ2) =
m2H(q2/m2)

32π2 −
q2

192π2 log
m2

µ2 (4.3)

and

H(x) ≡−
4
3

+
5
18

x−
(x−4)

6

√

x−4
x

log

(

√

(x−4)/x +1
√

(x−4)/x −1

)

(4.4)

with H(x) = −x/6+O(x3/2) for smallx. Provided our pion mass is light enough, we can use the
q2 dependence off ππ(q2) to extract this LEC. The grey dashed curve on the right hand of Fig. 2
shows our SU(2) fit to themπ = 330MeV pion form factor data.

Once the LEC is determined from this fit, we insert the physical pion mass in (4.1) to obtain
the solid blue curve. In addition we also represent the PDG world average[19] for the charge radius
using the black dashed line. Our best estimate for the pion charge radius comes from the SU(2)
NLO ChPT fit to the three lowestQ2 points and is

〈r2
π〉 = 0.418(31) fm2 . (4.5)

The fact that our result is in agreement with experiment,〈r2
π〉 = 0.452(11) fm2 [19], gives us con-

fidence that we are in a regime where chiral perturbation theory is applicable.
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5. Kl3 form factor results

As explained in Sec. 3, we calculate theK → π form factor directly atq2 = 0 by setting the
Kaon and Pion in turn to be at rest, while twisting the other one such thatq2 = 0. We refer to these
twist angles asθπ andθK , respectively. We then get the following equations:

〈K(pK)|Vµ |π(0)〉 = f +
Kπ(0)pK,µ − f−Kπ(0)pK,µ

〈K(0)|Vµ |π(pπ)〉 = f +
Kπ(0)pπ,µ + f−Kπ(0)pπ,µ (5.1)

Figure 3: Kℓ3 form factor, f 0
Kπ(q2), evaluated at

q2 = 0 directly using twisted boundary conditions.
Results are compared with data atq2 6= 0 and fits
from [3]

By simply solving the simultaneous equations
for each of theµ components separately we
find that the errors inf +

Kπ(0) and f−Kπ(0), are
much larger than the errors in the matrix ele-
ments. We have managed to circumvent this
by looking at all theµ components simultane-
ously, and then performing aχ2 minimisation
on the overdetermined system of equations to
find the values off +

Kπ(0) and f−Kπ(0) that best
fit the equations.

To obtain the matrix elements (5.1), we
consider different combinations ofR1 andR3

(3.5). We find that all combinations lead to
consistent results, with the best combination
being that we useR3 for all matrix elements
except for the case where the pion is twisted
and we are considering the 4th component of
the vector current. Using this set up, we obtain our preliminary results forf +

Kπ(0) and f−Kπ(0) (for
a pion mass ofmπ = 330MeV)

f +
Kπ(0) = 0.9742(41) , f−Kπ(0) = −0.113(12) . (5.2)

Our result for f +
Kπ(0) = f 0

Kπ(0) is shown in Fig. 3 where we compare with the previous determi-
nations in [3] which used polef +

pole(0) = 0.9774(35) and quadraticf +
quad(0) = 0.9749(59) func-

tions to interpolate betweenq2
max and negative values ofq2. In our previous result,f +

Kπ(0) =

0.9644(33)(34)(14), these were combined, taking a systematic error of (34) for the model depen-
dence. This contribution to the error has been eliminated in our new calculation.

We conclude that using partially twisted bc’s for theKℓ3 form factor, is an improvement on
the conventional method as it removes a source of systematic error, while keeping comparable
statistical errors. Another source of systematic error in our result in [3]is due to the slight difference
between our simulated strange quark mass (ams+ amres≃ 0.043) and the physical strange quark
(ams+amres≃ 0.037) [8], and we are in the process of determining the effect this has on our result
through a simulation with a partially quenched strange quark mass ofams+ amres≃ 0.033. We
also plan to combine our results with the latest expressions from chiral perturbation theory [20].
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