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In high energy physics, variable selection and reduction are key to conducting robust multivariate

analyses. Initial variable selection often results in variable sets with greater cardinality than the

number of degrees of freedom of the underlying model. This motivates the need for variable re-

duction, and more fundamentally, for a consistent decisionmaking framework. Such a framework

calledPARADIGM, based on a global reduction measure called the global loss function and rele-

vant for searches for new phenomena in physics, is describedin detail. We illustrate the common

pitfalls of variable selection and reduction, such as variable interactions and variable shadowing,

and show thatPARADIGM gives consistent results in their presence. In this paper, we discuss

the application ofPARADIGM to several searches for new phenomena in high energy physicsand

compare the performance of different measures of relative variable importance, in particular of

those based on binary regression. Finally, we describe a technique called variable amplification

and show howPARADIGM can be used to improve classification performance.
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1. Introduction

Large variable sets are a common occurrence in modern scientific research1. Several questions
are often encountered that require resolution. Are all the features necessary to achieve a particular
analysis performance goal? If a variable set were to be reduced, whatis the optimal size of the final
feature set? Is there any tolerance to noise? What is the optimal analysis strategy? Some questions
are easier to address than others but, fundamentally, a consistent decision making framework is
highly beneficial for such circumstances.

In this paper, we propose a decision making framework calledPARADIGM, aimed at feature
selection, reduction and the improvement of the classification process.PARADIGM provides the
researcher with easy to interpret criteria for making decisions relevant todifferent analysis tasks
and features selected for the tasks. The decision making framework is notlimited to problems
encountered in high energy physics (HEP) but has been developed onthe basis of several HEP
analyses of varying complexity.

PARADIGM relies on several concepts that have their roots in information and decisiontheories.
First is calledrelative variable importance, useful for tasks not associated with parameter space
reduction and also used inPARADIGM in the variable amplification algorithm. The other is the
global loss function, relevant for parameter space reduction and classifier selection.

In Section 2 we describe the initial classifier selection. Relative variable importance is de-
scribed in detail in Section 3.1. Sections 3.2 and 3.3 are devoted to the classification process using
variable amplification, a novel way of boosting. In Section 3.4 we discuss thechallenges frequently
encountered in multivariate analysis, such as variable interactions and variable shadowing, together
with how PARADIGM helps address them with relative ease. The global loss function is described
in detail in Section 3.5, while Section 3.6 discusses optimal classifier selection withthe global loss
function. Finally, the full decision making framework is summarized in Section 4.

2. Initial Classifier Selection

Classification-based criteria are widely used for variable selection and related decision making
[1, 2, 3]. Other measures can be derived directly from data without the use of classification, as in
[4]. The classification-independent approach is well known to be robust but less accurate than its
classification-based counterpart [1].

PARADIGM is by design classifier-choice independent. A researcher can and should initially
choose any or all of the classifiers available to her, such as neural networks, decision trees or rule
ensembles, as long as a performance measure can be assigned to all or some of the classifiers.
A common choice for this performance measure is the area under the receiver operating charac-
teristic (ROC) curve [5], but other measures may be better [6]. As will be described in Section
3.6,PARADIGM allows the researcher to unambiguously choose the optimal classifier basedon the
global loss functionresults.

1An interesting subject in itself, not discussed in this paper
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3. Formulation

3.1 Relative Variable Importance

Relative variable importancereflects the relevance of a particular variable to a given task
relative to all other variables.PARADIGM’s relative variable importance exhibits the main virtues
of other relative importance algorithms [3, 4, 7] such as linear separability and order-independence,
and provides additional sensitivity from the inclusion of individual variable effects in classification
and the capability to identify noisy and adverse features.

For the initially chosen variable set {V} = { X1, ...,XN}, relative variable importance(RVI) is
defined to be:

RVI(Xi) ≡ ∑
S⊆V:Xi ∈S

F(S)∗WXi (S) , (3.1)

whereF(Xi , ...Xj ) is a general classifier performance measure2, the sum encompasses subsets {S}
of {V} that contain the variableXi , and

WXi (S) ≡ 1−
F(S−{Xi})

F(S)
, (3.2)

is a weight that accounts for individual variable’s share of the classifier performance measureF(S).
This weight is defined as a fractional performance loss (or gain) inF(S) if the variableXi is removed
from a classifier. The final RVI values are additionally normalized:

N ≡ ∑
Xi

F(S)∗WXi (S) . (3.3)

so that all the RVI sum to 1.
A technique with a similar goal in mind is found in the context of rule-based regression, a

framework that condenses classifiers (usually decision trees) into sets of (if, then, else) rules that
can be used as ensemble predictors [3]. Notably, even if all the rules arepoor but marginally better
than random guessing, in a large ensemble they become a very good predictor [3, 7, 8]. A binary
rule-based regression tool calledRULEFIT [3] is selected for a comparative study.

3.2 Comparison between RVI andRULEFIT

Analogous to how relative variable importance is defined inRULEFIT [3], the RVI is directly
tied to the performance of classifiers containing the variable in question. However, in contrast
to RULEFIT, the weightWXi allows the RVI to be more sensitive to the effects of individual vari-
ables during classification and permits the identification of features that havea negative effect on
classification.

A typical plot of the RVI for the 27 variables of a representative high energy physics analysis
[9] is shown in Fig. 1. On an absolute scale,PARADIGM’s RVI exhibits both similarities and
differences toRULEFIT’s variable importance measure (Fig. 2). Overall, the two criteria appear
consistent with one another. The notable exception is a variable on the extreme right of Fig. 2,

2The range of the performance measure may vary. For the area under the ROC curve the range ofF(Xi , ...Xj ) is
from 0.5 to 1
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Figure 1: A typical plot of relative variable importance. Variable IDis assigned in the decreasing order of
RVI
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Figure 2: Comparison between variable importance measures providedby PARADIGM andRULEFIT on an
absolute scale

unambiguously identified byPARADIGM to be adverse to classification. As is true for all absolute
value criteria, the sign of variable importance is unattainable withRULEFIT.

In order to gain insight into relative variable importance, it is worthwhile to consider what
makes one relative variable importance measure preferable to another. Comparisons, such as that in
Figure 2, can be used to infer the differences and similarities between the twocandidate measures,
but nothing more.

3.3 Relative Variable Boosting

The optimal way to address this quantitatively rather than qualitatively is to consider the
amount of useful information provided by the two criteria and show how thatinformation can
be used to achieve analysis goals, for instance, to maximize the classification power of a given set
of variables.

We proceed to feed back the relative variable importance information into the classification
process, a procedure called RVBoost, that stands for relative variable importance boost or ampli-
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Figure 3: Comparison of classifier performance using RVBoost withPARADIGM and RULEFIT to that
without RVBoost, for a fixed number of classifiers

fication. This approach requires creation of new classifiers that use relative variable importance
in direct decision making during the classification process. For example in decision trees relative
variable importance information is introduced at each decision-making junction, to influence the
votes used to split the branches. The same boosting procedure can be easily applied to all known
classifiers.

If the relative variable importance measure in question contains information that may be used
to further the classification goals of the analysis, it is clearly beneficial. That is the case for both
relative variable importance andRULEFIT but in differing amounts (Fig. 3). A fixed number of clas-
sifiers in this example is RVBoosted with the RVI and theRULEFIT measures. The performance of
the new classifiers is compared to that of the original classifiers. As Figure3 shows,PARADIGM’s
RVI criteria outperformsRULEFIT’s variable importance and both outperform the original classi-
fiers when relative variable importance boosting is considered.

3.4 Subtlety in Variable Reduction

To illustrate a common caveat in multivariate analysis involving classification, the last vari-
able in Figure 4a is removed and the figure itself redrawn in 4b. A variable that was previously
marginally useful became adverse to classification and the order and magnitudes of relative variable
importance have changed. This behavior can be explained by the presence of multiple interactions
among variables, a common behavior during classification. For instance, in decision trees this can
lead to a phenomenon known as variable shadowing, when a presence ofone strongly interacting
variable partially or entirely shadows its interacting partner, making it appearirrelevant.

The fact that interacting variables influence the performance of their partners in both direc-
tions, can be used explain the common occurrence illustrated in Fig. 4. A classical formulation of
variable interactions on the basis of risk analysis is found in Ref. [10]. There are several methods
to quantify the strength of variable interactions. For example,RULEFIT uses the concept of partial
dependencies [3].

As Figure 4 shows, the variable importance landscape becomes distorted by the removal of
interacting variables. Presence of variable interactions significantly reduces the effectiveness of
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Figure 4: The RVI landscape a) prior to removal of the final variable on the right b) after its removal

criteria that do not directly take them into account, such asRULEFIT’s variable importance or the
RVI, when it comes to parameter space reduction. Ignoring this subtlety is a common mistake re-
searchers make. One instead should choose measures for parameter space reduction that implicitly
incorporate variable interactions, such as theglobal loss function, described in the next section.

3.5 Global Loss Function

Theglobal lossor gloss function(GF) is an information measure specific to variable reduction
that allows a researcher to make sound decisions by incorporating variable interactions. Given a
subset to be reduced, theglobal loss functionmeasures the predictive power loss relative to an
upper bound of achievable performance of classifiers that remain:

GF(S′) ≡ 1−
∑S⊆(V−S′) F(S)

2|V−S′|
, (3.4)

whereS′ ⊂V is the subset considered for reduction and the absolute scale limit in the denominator
is given by3:

∑
S⊆V−S′

F(S)max= 2|V−S′|
. (3.5)

In other words, given the initial variable set {V} from which a variety of classifiers can be
built, how much classification performance would be lost if one removes subsets {S′} of {V} of
various sizes? The answer is precisely thegloss function. The lower its value, the lower the loss of
classification power resulting from the removal of the subset {S′}.

A characteristic plot of the global loss function is shown in Fig. 5. Note, thatin this figure the
{ S′} subsets are ordered by increasing cardinality, and within the regions ofequicardinality, they
are arranged by a binary index4. Therefore, the subset {S′} on the extreme left of Fig. 5a is the
null set { /0}, for which the GF is approaching 0 but is still finite. On the opposite extreme is the
set {V} with the maximumgloss functionvalue of 0.5, which reflects the fact that all the variables
have been removed.

3that follows from: ∑n
k=0

(n
k

)

= 2n and F(S)max = 1. If F(S)max 6= 1, the right hand side of Eq. 3.5 and the
denominator in Eq. 3.4 instead become 2|V−S′|×F(S)max

4index, where each digit signifies the presence or absence of a corresponding variable in {S′}.
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Figure 5: Left: the gloss function for 0≤|S′|≤27. Right: a snapshot within the equicardinality region
|S′|=15

3.6 Optimal Classifier Selection

Theglobal loss functionpermits quantitative selection of optimal classifiers for given analysis
tasks, such as, for example, searches for previously unseen phenomena. The lower the area under
the gloss function curve (Fig. 5), the better the classifier choice this task. Different classifier choices
can be easily compared on this absolute scale leading to an optimal choice for further analysis.

4. Decision Making Framework

By combining thegloss functionandrelative variable importance, a powerful decision making
framework can be made. The structure of the framework is as follows:

• As described in Section 2, suitable classifiers are selected

• An optimal classifier is chosen with theglobal loss function

• If parameter reduction is desired, the {S′} subset with the minimum gloss function value is
chosen for reduction and its compliment is kept for further analysis

• Relative variable importance is used to cross-check that all adverse variables are included in
the {S′} subset to be reduced

• Once the final variable set is selected, theRVBOOST procedure described in Section 3.3 is
applied to maximize the performance of the classifiers built from this set

5. Discussion and Summary

It is worthwhile to note that minimization of theglobal loss functionis not equivalent to max-
imization of the classifier performance measure F(S), i.e. finding the highestperforming classifier
and its constituent variables (Fig. 6). Some researchers attempt a quick search for high performing
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Figure 6: The non-linear relationship between the global loss function and the classifier performance
measureF(S)

classifiers, typically by adding or subtracting variables with forward selection/backward elimina-
tion methods [11]. Once such a classifier is found its constituent parameter space is declared
optimal for further analysis. This approach, besides neglecting the variable interactions, is inflexi-
ble.

In realistic searches for new phenomena that occur in nature classifiersare typically trained
on simulated (usually Monte-Carlo) data for at least one of the major classesof events, usually the
one related to the previously unseen object or model. If the researcher limitsherself to only one
classifier, or alternatively to only one of the many possible combinations of thereduced parameter
space, without considering the associated loss of information, she becomes limited in options if
the search does not yield the desired result. Remaining options are to set limits and start over.
Making a choice of the parameter space based on the global loss function criterion, that consistently
produces a strong family of classifiers out of its constituents, allows one to step back and modify
the parameter space slightly and maintain a required high performance level, without having to
repeat the classifier search. This becomes crucial when the models that are being probed come in
significant variety and contain free parameters with unknown values. In this case, flexibility, tied
with high performance, becomes a crucial aspect of a successful search.

In summary,PARADIGM is a robust parallelized framework that provides decision-making
information to assist and improve modern day multivariate analyses.PARADIGM 2.0 is the software
version used for this study. Its areas of application are classifier selection, classifier improvement,
variable selection and variable reduction. As the next step, the authors (inparticular S.G.) would
like to implement or help implement the algorithm in a multivariate analysis framework.
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