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1. Singularitiesand what to do with them

That singularities arise generically in solutions to thaediin equations is the substance of
the Hawking-Penrose singularity theorems [1]. The moseg@rsingular space-times have been
studied very little due to the complicated nature of the lioear Einstein equations. The most well
studied examples arise for space-times with large isongetiyps and amongst these are black hole
and cosmological space-times.

Singularities can be categorised in many different waysgusieasures of strength, dimension,
orientation and topology.

The orientation of a singularity may be;

e Space-like - the most well-known being the big bang of FriadmRobertson Walker cos-
mology and that of the Schwarzschild Black Hole.

e Time-like - here the classic example is the Reissner-Ntrdsblack-hole.

¢ Null - conjectured to arise under generic perturbationsér horizons. Analytic examples
of null singularities are the metrics of singular plane wave

There are various approaches to studying the physics dfilginties.

¢ Singularities may be resolved in a geometric sense, foatiest by replacing the region close
to and including the singularity by a smooth geometry. Thisild be a classical resolution
where an additional source type term is added to the stresgpetensor in the region close
to the singularity in such a way as to deform the geometry afn@y it's singular form.
An example of this construction in the context of plane wagegiven in [2]. Often such
additional terms in the stress-energy tensor violate gnavgditions.

e Singularities are truly singular, however it may turn outtfields in the background of the
singularity are nevertheless smooth, in the sense thatrttegy be continued through the
singularity. This can happen for scalar fields near singidarthat are not too strong [5].

e There is some other quantum gravity related resolution:zBaifs that hide horizons and
consequently also singularities [3]; Loop Quantum Grakieg a minimum distance element
and thus there is encoded in this theory an upper bound op#uegime curvature [4].

e Gravitation and space-time enter a non-geometrical ptaagas of black holes; a new phase
of quantum geometry; or an alternative Yang-Mills desaipbf the physics.

There is much that one could say about these different appesa of which one could also
make a more complete catalogue and exposition. We will heneantrate on null singularities
and their non-geometric resolution via non-perturbatitaggics in String Theory described by a
Yang-Mills theory. The references in the bibliography amély to recent research papers and
some historical references. The interested reader sheiddto the research papers, on which this
exposition is largely based, for more complete references.
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2. Singularities - Probing with the Penrose Limit

A technique which has been extremely successful in recamsyer the study of string theory
in non-trivial space-time metrics is that of the Penrosatlifhhis corresponds to zooming in to a
path in the space-time by blowing up that part of the metrselto a chosen null geodesic. This
often leads to a non-trivial limit space-time that is muamlier than the original space-time and
thus more tractable from a mathematical point of view whiltha same time retaining important
features of the original space-time and in the case of itgetiee singularity. We will now explain
how this works in some more detail (for further details sdeaftl references therein).

Choose an affinely parametrised null geode#ig, the tangent vector to this geodesic,

EH = p# (2.1)

is parallel transported along the geodesic and we can exténtb a parallel pseudo-orthonormal
frame,
ds? = 2EYE™ + BapE2EP (2.2)

The profile of the plane-wave
d<? = 2dudv+ Agp(u)x@xXPdi? + dx? (2.3)

that results upon taking the Penrose limit of this geomeiti vespect toyis

Aan(X") = —Raibi |yx) (2.4)

where on the right hand side we have frame components of thvatowe tensor of the original
metric. Thus the Penrose limit is actually encoding somesjglay information about the original
metric. In particular the Penrose limit space-time givesxarct description of the space-time along
the geodesic, this also being the leading behaviour of thmiFeordinate expansion around the
null geodesic in the original space-time [6].

The geometric significance of the wave-profg,(x*) is that it is the transverse null geodesic
deviation matrix along of the original metric

d2

Jp 2t =AWz (2.5)

whereZ is the transverse geodesic deviation vector. Physicallgeeehat the Penrose limit retains
precisely the tidal forces along the corresponding nulbigse in the original geometry.

Using the Penrose limit to study singularities one makesrarkable observation. In all cases
for which a non-trivial Penrose limit exists the limit spag®e is a member of a very special class
of plane wave space-times - the singular homogeneous plades{SHPW's) - this under very
mild restrictions on the stress-energy tensor that is thecgdfor the Einstein equations.

For example, for a spherically symmetric time-dependerttime

ds® = —f(t)dt® +g(t)dr? +t2dQ3 (2.6)

one can show that for the geodegia) = (t(u),r(u),Q(u)) the non-trivial components of the PL
metric are

Aa1 = (ty/fg)1of(t/Fg) (2.7)
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. 5
Aap = %b(% - t(LW) (2.8)

In the context of investigations of the Cosmic Censorshipdilgesis, Szekeres and lyer [13]
studied a large class of four-dimensional spherically sytnim metrics that they dubbed “metrics
with power-law type singularities”. This class encompadbe near singularity behaviour of prac-
tically all known singular spherically symmetric metric¥he singularities in these metrics are
time-like, null and space-like. The analysis of the PL far thull and time-like singularities in the
class of Szekeres-lyer geometries probably does not givemglete picture of the nature of the
singularities so we will focus just on the (more interestingse of space-like singularities.

One finds that for all of these geometries

t(u) =u? (2.9)

where the exponert depends on the details of the singularity. Clearly this dae gse to various
power law behaviours as one can easily see from the expnefgsid, above.

For the PL metric one can prove the following;

Penrose Limits of spherically symmetric space-like or tlike singularities of power-law type
satisfying (but not saturating) the Dominant Energy Caiodit(DEC) are singular homogeneous
plane waves with profile

Aap(U) = — W Sapli 2. (2.10)

There is a qualitative difference in behaviour between SERMth w? > 1/4 and those with
w? < 1/4 and it turns out that for all geometries satisfying the abewnditions the resulting fre-
quencies squared? are bounded from above by/4 unless one is on the border to an extreme
equation of state. Apart from this very interesting uniaerSHPW behaviour of the PL limit
geometry, the bound on frequencies is also quite intriguingstudies of scalar fields near singu-
larities, it is precisely forw? < 1/4 that one scalar field theory near a singularity becomes more
tractable [5].

3. Singular Homogeneous Plane Waves

As we have seen then, the plane wave geometry that arisesomiectakes the Penrose limit
of a singular geometry is generically quite a special andrsgitric space-time - a Singular Ho-
mogeneous Plane Wave. These metrics have a maximal grogorogiries with the algebraic
structure of a Heisenberg algebra plus an extension risong f scaling of the coordinates and
thus in addition to being Plane waves they are also homogerguace-times.

Plane waves can be represented in two different coordigateras, the Rosen and the Brinkmann
coordinates. Each being useful for studying different atspef the geometries. The Brinkmann
coordinates are unigue, the only non-trivial componenhefrnetric being equal to the only non-
trivial component of the curvature tensor (#hg = —Raipb+).

In Brinkmann coordinates the metric for SHPW'’s has the uaifium,

AaZ?
(z+)?

fabza
zr

ds? = —2dz'dz + (dzh)?+ dz"d2 +dZ (3.1)



Penrose Limits, Singularities and DLCQ Martin O’Loughlin

with constant symmetrifg, and anti-symmetrid,, whilst in Rosen coordinates we find
ds® = —2dy"dy™ -+ g;j (y")dy dy (3.2)

with less obvious restrictions on tlgg . It is evident from the Brinkmann form of the metric that
there is a singularity a" = 0 at finite affine distance corresponding to divergent tidedds, and
so the metrics are geodesically incomplete.

The Brinkmann coordinates contain the essential infolwnadibout the structure of the metric
in a unique way, however the full symmetries are somewhdicdif to see in this coordinate
system. In the Rosen coordinates these symmetries areimguiesand it is also thus easy to see
what is required to extend the Heisenberg algebra of isaasedf the generic plane wave to the
isometries required for the geometry to additionally be bgeneous [8].

The Heisenberg algebra is generated (in Rosen coordinayetsie commuting translations,
Z =0, andQ = 9,;, together with the “hidden” Heisenberg dual translatidfs,

The additional isometry is that of a scale invariance in Bmann coordinatesiz",z ) —
(Az",A~1z7), and the corresponding Killing vector is,

X=70,—-79,. (3.3)

String theory in the background of a SHPW is solvable and els ptovides an example of a
non-trivial (time-dependent), singularity with a largensetry group. In principle this means that
one can hope to study more deeply the behaviour of stringyhadhe presence of singularities
and in time-dependant backgrounds using strings in SHP¥\Esslvable toy model.

4. Sen-Seiberg and Discrete Light-Cone Quantization

The basis for our discussion of the DLCQ (Discrete Light-€@uantization) of string/M-
theory, is the treatment by Sen [9] and Seiberg [10] revieinddil]. One considers the metric

ds = —2dytdy +... = —(dy°)?+ (dy’)%+ ... (4.1)

and looks for a limit which enables one to realise the ligk#-compactificationy™ ~y— — 2nR
as a limit of space-like compactifications. To achieve thisde a boost,

xt=y* =Pyt (4.2)
together with the identificatior® ~ x° + 27Rs. With € = /2R/Rs we then find
y'~yT R /Ry vy —21R (4.3)

Beginning then witiN units of momentum in the® direction, Py = N/Rs, we find after the

boost Rs — 0) that, N
t—_p = —
pr=-p_ R’ (4.4)

In a sector with N units of light-cone momentum, and with a srealem, the DLCQ Hamil-
tonian is defined by the limit

HPY(mR) = lim 9y (4.5)
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On dimensional grounds when the energies and lengths deeldnal = R/Rs the original Hamil-
tonian scales as,
R R R A
—H Rs) = Hy(=m, =) = Hy(M Ry). 4,
Rs N(m7 S) N(Rsm7 R) N(m7 S) ( 6)
With this rescaling the DLCQ is realised by taking the limit,

HO'mR) = F{imoHN(m, Rs). (4.7)

We see that the discrete light-cone quantization of M-théoattained by making the above
identifications and transformations with= mp and then takindxs = Ry1 — 0 and thus the non-
perturbative physics of M-theory is described by the BFS&imguantum mechanics of N DO-
branes in type IIA string theory.

One can apply this same construction to lIA string theorylileg to a non-perturbative de-
scription that utilizes N D-strings in type 1IB string thgan a limit that corresponds to a matrix
string action. We will discuss in slightly more detail beland in particular the duality transfor-
mations that one must perform on the plane wave spacetimes.

Before we go to the general case of SHPW'’s we will first take iakglook at the half-way
situation discussed in the Big Bang matrix string paper &pSr Sethi and Verlinde [12]. In this
case the geometry (a simplified model of the null big-bandlaisspace with a null linear dilaton
in 1lA string theory. It is amusing to observe that this getnyyewhen lifted to 11-dimensions is
precisely a SHPW.

Due to the fact that the dilaton depends on one of the lighe@wordinates we can non-longer
use the approach of Sen and Seiberg and to adapt their apgoosiech geometries we require that
our geometry includes one other compact space-like dinecti constant radius.

ds? = —2dy"dy + (dy})?+.... (4.8)

The DLCQ proceeds as above but the identification is no loimg#re spatial park® of the light-
cone coordinates, but rather in the additional ciyélewith some additional adjustments the DLCQ
of CSV [12] extends naturally to SHPW'’s as we will outline retnext section.

5. The Dirac Born-Infeld action of Matrix String Theory

For a solution to type IIA string theory the SHPW metric is,

ds = guud¥dx’ = —2dz"dz + > Ma(Ma— 1)(?)2(?;?22 +dZ, (5.1)

accompanied by the corresponding dilaton,
e = (2P, (5.2)

wherepis related to then, via the equations of low energy type 1A string theory.
The series of transformations discussed in the previousosemply a corresponding series
of transformations on the space-time metric. The simplest 1 derive these transformations is
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to read them directly from the discussion of the previousptdra(a more detailed discussion can
be found in [11]). One performs first a boost and scaling iretii string theory and then lifts
the theory to M-theory with the 11th dimension having radus= /sgs. We then reduce back to
ten-dimensions along the scaled circle that has raius Rs = 2R, and then finally carry out a
T-duality on thex! circle.

Following this procedure one finds that the paramters of tred fIB theory are related to the
/s, gs andRy; = /sgs of the original 1A theory by (we will denote [IB quantitiey/la prime),

R R
()P =e(ls)? 2, dhi=e—— 5.3
()=l Gs=E (53)

wheree = Rs/R and the scaled dual metric-dilaton background is given by,

4
(d$)2 = \/giie ®( — 208 X + %{dﬂ% )=l dg (5.4)
11
1
¢ =—-0+ Eloggn (5.5)

We will now determineHy for N Dstrings in the dual type 1IB string theory. We considlerctua-
tions in the Dirac Born-Infeld action expanded around asitas solution for a D-string in type 1IB
string theory. The chosen solution corresponds to a simgiére of mass motion of the D-string
and the resulting action is independent of the particulaistamts of the trajectory provided that it
starts aty™ — —o and goes ty" = 0.

We expand the Abelian Dirac Born-Infeld action around thapdé classical solution with
non-trivial motion only in(x™,x~,x%),

=1, xXX=0/ls (5.6)

andx; determined from the constraint equatidn; = b?g11/2a. One finds for the fluctuations of
the transverse coordinat¥$(t, a),

1 7 1 . . . .
ST / drdo(5; (1)(0rX X! — 05X 9pXT) + 2 A2 IF2 | (5.7)
S
and the Yang-Mills coupling is related to the original dilatby
Orm~ —e? (5.8)

The ¢ scaling of the coordinates undoes the Penrose scaling tfaih&verse coordinates and
as such the fluctuations are directly related to the cootetinaf the original metric. Furthermore
the energieE of the above fluctuations are finite and equal to the stringrihéghtcone fluctua-
tions. We need to compare the energies of massive open siodgs and bulk closed string modes
to see that they are large compared to the YM energies. Inrttiétéurns out that, very nicely,
the onlye dependence is in the IIB string length and string couplirgghtof which go to zero as
e—0.

Decoupling of the massive open and closed string modesssinmonstrated by the following
lim (5E) ¢4 = lim (5E) (¢4) (gh) /¥ = 0 (5.9)

e—0
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The DLCQ limit decouples the D-string from the open and dicsteing modes and so we have
derived a non-perturbative description for a sector ofigttheory with fixed light-cone momentum
in the vicinity of a singularity. For more than one D-stringeoneeds to use non-Abelian actions
leading to a description of N D-strings by the non-Abeliantnmastring action

1 1 . . . .
S= F@/(jr<jc;[§gi,-(r)(@rx'%xl—%x'%xl) (5.10)

+ 2PN RS + 200X X7 (5.11)

16r2a2
where theX'(g, 1) are hermitian matrix valued fields.

The full details of the physics near the singularity depeindan important way on the be-
haviour of the string coupling and consequently on the Yililgs coupling near the singularity.
For the current approach to singularities in string thetwy host interesting situation is that in
which the string coupling diverges implying that the cop@sding Yang-Mills coupling goes to
zero and we enter a non-Abelian phase of the Yang-Mills thaothe sense that the quartic term
in the potential is not supressed near the singularity nmggthiat large commutators between co-
ordinates are allowed and

(X', X1] #0. (5.12)

The singularity of General Relativity is then replaced byogeptially non-singular desciption
in terms of non-commuting space-time coordinates and weaklipled non-abelian Yang-Mills
theory.

6. Different Coordinates, Different Yang-Mills, Same space-time

Given that any SHPW will give rise to a non-trivial Yang-Miltheory, and that furthermore
any SHPW has a unique representation in Brinkmann cooetinamd many different represen-
tations in Rosen coordinates, one can find many "differegtiv@lent Yang-Mills theories, re-
lated by coordinate transformations, although on the fdiéetloey do not obviously describe the
same physics. Any reduction from Brinkmann coordinate$ gitle you massive scalars coupled
to Yang-Mills, while a reduction from any Rosen coordinatéh instead lead to a theory with
non-trivial time-dependent coupling constants descghimassless scalars coupled to Yang-Mills
theory. These apparently different theories are relatetbloytrivial field transformations inherited
from the coordinate transformations that take you from oegimto the other.

Notice that in particular when the string coupling is larganthe singularity the matrix string
picture in Brinkmann coordinates indicates that a tachyombde becomes important. Recall that
from the previous discussion, for strong coupling near thguarity the appropriate description
of physics comes from weakly coupled Yang-Mills theory, d@mds one needs to understand the
meaning of these negative mass squared scalars to makerfprtigress in the non-perturbative
string theory of singularities.

Summary

The universal behaviour of singularities in the Penroseit_gives rise to a plane wave of
increased symmetry and with an upper bound on its strendpjlectuto a simple condition on the
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stress-energy tensor. This allows us to carry out a more Etengnalysis of a singularity in string
theory and this in principle allows us to evaluate and elatsodifferent proposals for the resolution
of singularities although there still remains much work &dmne. In particular we see that for a
range of parameters for which the string coupling divergegbesingularity there is a potentially
very interesting new phase for which the dynamics of the imstreplaced by a Yang-Mills theory
in a non-commutative space. The full consequences of teidtreave not yet been completely
elaborated.
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