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1. Singularities and what to do with them

That singularities arise generically in solutions to the Einstein equations is the substance of
the Hawking-Penrose singularity theorems [1]. The most general singular space-times have been
studied very little due to the complicated nature of the non-linear Einstein equations. The most well
studied examples arise for space-times with large isometrygroups and amongst these are black hole
and cosmological space-times.

Singularities can be categorised in many different ways using measures of strength, dimension,
orientation and topology.

The orientation of a singularity may be;

• Space-like - the most well-known being the big bang of Friedmann Robertson Walker cos-
mology and that of the Schwarzschild Black Hole.

• Time-like - here the classic example is the Reissner-Nördstrom black-hole.

• Null - conjectured to arise under generic perturbations of inner horizons. Analytic examples
of null singularities are the metrics of singular plane waves.

There are various approaches to studying the physics of singularities.

• Singularities may be resolved in a geometric sense, for instance by replacing the region close
to and including the singularity by a smooth geometry. This would be a classical resolution
where an additional source type term is added to the stress-energy tensor in the region close
to the singularity in such a way as to deform the geometry awayfrom it’s singular form.
An example of this construction in the context of plane wavesis given in [2]. Often such
additional terms in the stress-energy tensor violate energy conditions.

• Singularities are truly singular, however it may turn out that fields in the background of the
singularity are nevertheless smooth, in the sense that theymay be continued through the
singularity. This can happen for scalar fields near singularities that are not too strong [5].

• There is some other quantum gravity related resolution: Fuzzballs that hide horizons and
consequently also singularities [3]; Loop Quantum Gravityhas a minimum distance element
and thus there is encoded in this theory an upper bound on the space-time curvature [4].

• Gravitation and space-time enter a non-geometrical phase:a gas of black holes; a new phase
of quantum geometry; or an alternative Yang-Mills description of the physics.

There is much that one could say about these different approaches, of which one could also
make a more complete catalogue and exposition. We will here concentrate on null singularities
and their non-geometric resolution via non-perturbative physics in String Theory described by a
Yang-Mills theory. The references in the bibliography are largely to recent research papers and
some historical references. The interested reader should refer to the research papers, on which this
exposition is largely based, for more complete references.
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2. Singularities - Probing with the Penrose Limit

A technique which has been extremely successful in recent years for the study of string theory
in non-trivial space-time metrics is that of the Penrose limit. This corresponds to zooming in to a
path in the space-time by blowing up that part of the metric close to a chosen null geodesic. This
often leads to a non-trivial limit space-time that is much simpler than the original space-time and
thus more tractable from a mathematical point of view while at the same time retaining important
features of the original space-time and in the case of interetst the singularity. We will now explain
how this works in some more detail (for further details see [7] and references therein).

Choose an affinely parametrised null geodesicγ(u), the tangent vector to this geodesic,

Eµ
+ = γ̇µ (2.1)

is parallel transported along the geodesic and we can extendthis to a parallel pseudo-orthonormal
frame,

ds2 = 2E+E−+ δabE
aEb (2.2)

The profile of the plane-wave

ds2 = 2dudv+Aab(u)xaxbdu2 +d~x2 (2.3)

that results upon taking the Penrose limit of this geometry with respect toγ is

Aab(x
+) = −Ra+b+|γ(x+) (2.4)

where on the right hand side we have frame components of the curvature tensor of the original
metric. Thus the Penrose limit is actually encoding some physical information about the original
metric. In particular the Penrose limit space-time gives anexact description of the space-time along
the geodesic, this also being the leading behaviour of the Fermi coordinate expansion around the
null geodesic in the original space-time [6].

The geometric significance of the wave-profileAab(x+) is that it is the transverse null geodesic
deviation matrix alongγ of the original metric

d2

du2 Za = Aab(u)Zb (2.5)

whereZ is the transverse geodesic deviation vector. Physically wesee that the Penrose limit retains
precisely the tidal forces along the corresponding null geodesic in the original geometry.

Using the Penrose limit to study singularities one makes a remarkable observation. In all cases
for which a non-trivial Penrose limit exists the limit space-time is a member of a very special class
of plane wave space-times - the singular homogeneous plane waves (SHPW’s) - this under very
mild restrictions on the stress-energy tensor that is the source for the Einstein equations.

For example, for a spherically symmetric time-dependent metric

ds2 = − f (t)dt2 +g(t)dr2 + t2dΩ2
d (2.6)

one can show that for the geodesicγ(u) = (t(u), r(u),Ω(u)) the non-trivial components of the PL
metric are

A11 = (tṫ
√

f g)−1∂ 2
u (tṫ

√

f g) (2.7)
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Aab = δab(
ẗ(u)

t(u)
− L2

t(u)4 ) (2.8)

In the context of investigations of the Cosmic Censorship Hypothesis, Szekeres and Iyer [13]
studied a large class of four-dimensional spherically symmetric metrics that they dubbed “metrics
with power-law type singularities”. This class encompasses the near singularity behaviour of prac-
tically all known singular spherically symmetric metrics.The singularities in these metrics are
time-like, null and space-like. The analysis of the PL for the null and time-like singularities in the
class of Szekeres-Iyer geometries probably does not give a complete picture of the nature of the
singularities so we will focus just on the (more interesting) case of space-like singularities.

One finds that for all of these geometries

t(u) = ua (2.9)

where the exponenta depends on the details of the singularity. Clearly this can give rise to various
power law behaviours as one can easily see from the expression for Aab above.

For the PL metric one can prove the following;

Penrose Limits of spherically symmetric space-like or time-like singularities of power-law type
satisfying (but not saturating) the Dominant Energy Condition (DEC) are singular homogeneous
plane waves with profile

Aab(u) = −ω2
aδabu

−2. (2.10)

There is a qualitative difference in behaviour between SHPW’s with ω2 > 1/4 and those with
ω2 ≤ 1/4 and it turns out that for all geometries satisfying the above conditions the resulting fre-
quencies squaredω2

a are bounded from above by 1/4 unless one is on the border to an extreme
equation of state. Apart from this very interesting universal SHPW behaviour of the PL limit
geometry, the bound on frequencies is also quite intriguing. In studies of scalar fields near singu-
larities, it is precisely forω2 ≤ 1/4 that one scalar field theory near a singularity becomes more
tractable [5].

3. Singular Homogeneous Plane Waves

As we have seen then, the plane wave geometry that arises whenone takes the Penrose limit
of a singular geometry is generically quite a special and symmetric space-time - a Singular Ho-
mogeneous Plane Wave. These metrics have a maximal group of isometries with the algebraic
structure of a Heisenberg algebra plus an extension rising from a scaling of the coordinates and
thus in addition to being Plane waves they are also homogeneous space-times.

Plane waves can be represented in two different coordinate systems, the Rosen and the Brinkmann
coordinates. Each being useful for studying different aspects of the geometries. The Brinkmann
coordinates are unique, the only non-trivial component of the metric being equal to the only non-
trivial component of the curvature tensor (theAab = −Ra+b+).

In Brinkmann coordinates the metric for SHPW’s has the unique form,

ds2 = −2dz+dz− +
Aabzazb

(z+)2 (dz+)2 +
fabza

z+
dz+dzb +d~z2 (3.1)
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with constant symmetricAab and anti-symmetricfab whilst in Rosen coordinates we find

ds2 = −2dy+dy− +gi j (y
+)dyidyj (3.2)

with less obvious restrictions on thegi j . It is evident from the Brinkmann form of the metric that
there is a singularity atz+ = 0 at finite affine distance corresponding to divergent tidal forces, and
so the metrics are geodesically incomplete.

The Brinkmann coordinates contain the essential information about the structure of the metric
in a unique way, however the full symmetries are somewhat difficult to see in this coordinate
system. In the Rosen coordinates these symmetries are very simple and it is also thus easy to see
what is required to extend the Heisenberg algebra of isometries of the generic plane wave to the
isometries required for the geometry to additionally be homogeneous [8].

The Heisenberg algebra is generated (in Rosen coordinates)by the commuting translations,
Z = ∂y− andQ(i) = ∂yi , together with the “hidden” Heisenberg dual translations,P(i).

The additional isometry is that of a scale invariance in Brinkmann coordinates,(z+,z−) →
(λz+,λ−1z−), and the corresponding Killing vector is,

X = z+∂z+ −z−∂z− . (3.3)

String theory in the background of a SHPW is solvable and as such provides an example of a
non-trivial (time-dependent), singularity with a large isometry group. In principle this means that
one can hope to study more deeply the behaviour of string theory in the presence of singularities
and in time-dependant backgrounds using strings in SHPW’s as a solvable toy model.

4. Sen-Seiberg and Discrete Light-Cone Quantization

The basis for our discussion of the DLCQ (Discrete Light-Cone Quantization) of string/M-
theory, is the treatment by Sen [9] and Seiberg [10] reviewedin [11]. One considers the metric

ds2 = −2dy+dy− + . . . = −(dy0)2 +(dy9)2 + . . . (4.1)

and looks for a limit which enables one to realise the light-like compactification,y− ∼ y−−2πR
as a limit of space-like compactifications. To achieve this we do a boost,

x± ≡ y′± = e±β y± (4.2)

together with the identificationx9 ∼ x9 +2πRs. With eβ =
√

2R/Rs we then find

y+ ∼ y+ + πR2
s/R, y− ∼ y−−2πR (4.3)

Beginning then withN units of momentum in thex9 direction, p′9 = N/RS, we find after the
boost (Rs → 0) that,

p+ ≡−p− =
N
R

. (4.4)

In a sector with N units of light-cone momentum, and with a mass scalem, the DLCQ Hamil-
tonian is defined by the limit

HDLCQ
N (m,R) = lim

Rs→0
i∂y+ (4.5)
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On dimensional grounds when the energies and lengths are scaled byλ = R/Rs the original Hamil-
tonian scales as,

R
Rs

HN(m,RS) = HN(
R
Rs

m,
R2

s

R
) ≡ HN(m̂,R̂s). (4.6)

With this rescaling the DLCQ is realised by taking the limit,

HDLCQ
N (m,R) = lim

R̂s→0
HN(m̂,R̂s). (4.7)

We see that the discrete light-cone quantization of M-theory is attained by making the above
identifications and transformations withm= mP and then takingRs = R11 → 0 and thus the non-
perturbative physics of M-theory is described by the BFSS matrix quantum mechanics of N D0-
branes in type IIA string theory.

One can apply this same construction to IIA string theory leading to a non-perturbative de-
scription that utilizes N D-strings in type IIB string theory in a limit that corresponds to a matrix
string action. We will discuss in slightly more detail belowand in particular the duality transfor-
mations that one must perform on the plane wave spacetimes.

Before we go to the general case of SHPW’s we will first take a quick look at the half-way
situation discussed in the Big Bang matrix string paper of Craps, Sethi and Verlinde [12]. In this
case the geometry (a simplified model of the null big-bang) isflat-space with a null linear dilaton
in IIA string theory. It is amusing to observe that this geometry, when lifted to 11-dimensions is
precisely a SHPW.

Due to the fact that the dilaton depends on one of the light-cone coordinates we can non-longer
use the approach of Sen and Seiberg and to adapt their approach to such geometries we require that
our geometry includes one other compact space-like direction of constant radius.

ds2 = −2dy+dy− +(dy1)2 + . . . . (4.8)

The DLCQ proceeds as above but the identification is no longerin the spatial partx9 of the light-
cone coordinates, but rather in the additional circley1. With some additional adjustments the DLCQ
of CSV [12] extends naturally to SHPW’s as we will outline in the next section.

5. The Dirac Born-Infeld action of Matrix String Theory

For a solution to type IIA string theory the SHPW metric is,

ds2 = gµνdxµdxν = −2dz+dz− +∑
a

ma(ma−1)(za)2 (dz+)2

(z+)2 +d~z2, (5.1)

accompanied by the corresponding dilaton,

e2φ = (z+)p, (5.2)

wherep is related to thema via the equations of low energy type IIA string theory.
The series of transformations discussed in the previous section imply a corresponding series

of transformations on the space-time metric. The simplest way to derive these transformations is

6
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to read them directly from the discussion of the previous chapter (a more detailed discussion can
be found in [11]). One performs first a boost and scaling in type IIA string theory and then lifts
the theory to M-theory with the 11th dimension having radiusR̂11 = εℓsgs. We then reduce back to
ten-dimensions along the scaled circle that has radiusR̂1 = R̂s = ε2R, and then finally carry out a
T-duality on thex11 circle.

Following this procedure one finds that the paramters of the final IIB theory are related to the
ℓs, gs andR11 = ℓsgs of the original IIA theory by (we will denote IIB quantities by a prime),

(ℓ′s)
2 = ε(ℓs)

2R11

R
, g′s = ε

R
R11

(5.3)

whereε = Rs/R and the scaled dual metric-dilaton background is given by,

(ds′)2 =
√

g11e
−φ(

−2dx̂+dx̂− +
ℓ4

s

R2g11
(dx̂1)2 + . . .

)

≡ eφ ′
ds̃2 (5.4)

φ ′ = −φ +
1
2
logg11 (5.5)

We will now determineHN for N Dstrings in the dual type IIB string theory. We considerfluctua-
tions in the Dirac Born-Infeld action expanded around a classical solution for a D-string in type IIB
string theory. The chosen solution corresponds to a simple centre of mass motion of the D-string
and the resulting action is independent of the particular constants of the trajectory provided that it
starts aty+ →−∞ and goes toy+ = 0.

We expand the Abelian Dirac Born-Infeld action around the simple classical solution with
non-trivial motion only in(x+,x−,x1),

x+
c = τ , x1

c = σ/ℓs (5.6)

andx−c determined from the constraint equation∂τx−c = b2g̃11/2a. One finds for the fluctuations of
the transverse coordinatesXi(τ ,σ),

S=
1

2πℓ2
s

∫

dτdσ [
1
2

gi j (τ)(∂τXi∂τX j −∂σXi∂σ X j)+2π2ℓ4
sg2

se2φ(τ)F2
τσ ] (5.7)

and the Yang-Mills coupling is related to the original dilaton by

gYM ∼ 1
gsℓs

e−φ (5.8)

Theε scaling of the coordinates undoes the Penrose scaling of thetransverse coordinates and
as such the fluctuations are directly related to the coordinates of the original metric. Furthermore
the energiesδ Ê of the above fluctuations are finite and equal to the string theory lightcone fluctua-
tions. We need to compare the energies of massive open stringmodes and bulk closed string modes
to see that they are large compared to the YM energies. In the end it turns out that, very nicely,
the onlyε dependence is in the IIB string length and string coupling, both of which go to zero as
ε → 0.

Decoupling of the massive open and closed string modes is thus demonstrated by the following

lim
ε→0

(δ Ê)ℓ′s = lim
ε→0

(δ Ê)(ℓ′s)(g
′
s)

(1/4) = 0 (5.9)

7
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The DLCQ limit decouples the D-string from the open and closed string modes and so we have
derived a non-perturbative description for a sector of string theory with fixed light-cone momentum
in the vicinity of a singularity. For more than one D-string one needs to use non-Abelian actions
leading to a description of N D-strings by the non-Abelian matrix string action

S =
1

2πℓ2
s

∫

dτdσ [
1
2

gi j (τ)(Dτ Xi
Dτ X j −Dσ Xi

Dσ X j) (5.10)

+ 2π2ℓ4
sg2

se2φ(τ)F2
τσ +

1
16π2ℓ4

sg2
s
e−2φ(τ)[Xi,X j ]2] (5.11)

where theXi(σ ,τ) are hermitian matrix valued fields.
The full details of the physics near the singularity dependsin an important way on the be-

haviour of the string coupling and consequently on the Yang-Mills coupling near the singularity.
For the current approach to singularities in string theory the most interesting situation is that in
which the string coupling diverges implying that the corresponding Yang-Mills coupling goes to
zero and we enter a non-Abelian phase of the Yang-Mills theory in the sense that the quartic term
in the potential is not supressed near the singularity meaning that large commutators between co-
ordinates are allowed and

[Xi,X j ] 6= 0. (5.12)

The singularity of General Relativity is then replaced by a potentially non-singular desciption
in terms of non-commuting space-time coordinates and weakly coupled non-abelian Yang-Mills
theory.

6. Different Coordinates, Different Yang-Mills, Same space-time

Given that any SHPW will give rise to a non-trivial Yang-Mills theory, and that furthermore
any SHPW has a unique representation in Brinkmann coordinates and many different represen-
tations in Rosen coordinates, one can find many "different" equivalent Yang-Mills theories, re-
lated by coordinate transformations, although on the face of it they do not obviously describe the
same physics. Any reduction from Brinkmann coordinates will give you massive scalars coupled
to Yang-Mills, while a reduction from any Rosen coordinateswill instead lead to a theory with
non-trivial time-dependent coupling constants describing massless scalars coupled to Yang-Mills
theory. These apparently different theories are related bynon-trivial field transformations inherited
from the coordinate transformations that take you from one metric to the other.

Notice that in particular when the string coupling is large near the singularity the matrix string
picture in Brinkmann coordinates indicates that a tachyonic mode becomes important. Recall that
from the previous discussion, for strong coupling near the singularity the appropriate description
of physics comes from weakly coupled Yang-Mills theory, andthus one needs to understand the
meaning of these negative mass squared scalars to make further progress in the non-perturbative
string theory of singularities.

Summary

The universal behaviour of singularities in the Penrose Limit gives rise to a plane wave of
increased symmetry and with an upper bound on its strength subject to a simple condition on the
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stress-energy tensor. This allows us to carry out a more complete analysis of a singularity in string
theory and this in principle allows us to evaluate and elaborate different proposals for the resolution
of singularities although there still remains much work to be done. In particular we see that for a
range of parameters for which the string coupling diverges at the singularity there is a potentially
very interesting new phase for which the dynamics of the metric is replaced by a Yang-Mills theory
in a non-commutative space. The full consequences of this result have not yet been completely
elaborated.
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