Renormalization of B-meson distribution amplitudes

S. Descotes-Genon*

Laboratoire de Physique Théorique
CNRS/Univ. Paris-Sud 11 (UMR 8627),
F-91405 Orsay, France
E-mail: sebastien.descotes-genon@th.u-psud.fr

N. Offen

Laboratoire de Physique Théorique
CNRS/Univ. Paris-Sud 11 (UMR 8627),
F-91405 Orsay, France
E-mail: nils.offen@th.u-psud.fr

We summarize recent calculations concerning the evolution kernels of the two-particle B-meson distribution amplitudes ϕ_{+}and ϕ_{-}taking into account three-particle contributions, as well as the evolution kernel of the combination of three-particle distribution amplitudes $\Psi_{A}-\Psi_{V}$. We exploit these results to confirm constraints on ϕ_{+}and ϕ_{-}derived from the light-quark equation of motion.

The 2009 Europhysics Conference on High Energy Physics,
July 16-22 2009
Krakow, Poland

[^0]Exclusive decays of B-mesons provide important tools to test the Standard Model and to search for physics beyond it. In this game, B-meson light-cone distribution amplitudes (LCDAs) have been shown to play a prominent role, since these hadronic inputs encode a part of soft physics that is not covered by the usual form factors. Recent years have seen several analyses concerning the renormalization properties [1, 2, 3] and the shape of the B-meson LCDAs [3, 4, 5, 6, 7, 8, 9]. Up to now most of these analyses were restricted to the two-particle case. Here we present the results of for the renormalization of the two-particle B-meson LCDAs taking into account mixing with threeparton LCDAs [10] as well as for the combination of three-particle LCDAs $\Psi_{A}-\Psi_{V}$ entering the equations of motion [11].

The relevant two- and three-parton distribution amplitudes are defined as B to vacuum matrixelements of a non-local heavy-to-light operator, which reads in the two-particle case [4]:

$$
\begin{equation*}
\langle 0| \bar{q}_{\beta}(z)[z, 0]\left(h_{v}\right)_{\alpha}(0)|B(p)\rangle=-i \frac{\hat{f}_{B}(\mu)}{4}\left[(1+\downarrow)\left(\tilde{\phi}_{+}(t)+\frac{t}{2 t}\left[\tilde{\phi}_{-}(t)-\tilde{\phi}_{+}(t)\right]\right) \gamma_{5}\right]_{\alpha \beta} \tag{1}
\end{equation*}
$$

and in the three-particle case [7]:

$$
\begin{align*}
& \langle 0| \bar{q}_{\beta}(z)[z, u z] g G_{\mu v}(u z) z^{v}[u z, 0]\left(h_{v}\right)_{\alpha}(0)|B(p)\rangle \tag{2}\\
& =\frac{\hat{f}_{B}(\mu) M}{4}\left[(1 + \vee) \left[\left(v_{\mu} t-t \gamma_{\mu}\right)\left(\tilde{\Psi}_{A}(t, u)-\tilde{\Psi}_{V}(t, u)\right)-i \sigma_{\mu v} z^{v} \tilde{\Psi}_{V}(t, u)\right.\right. \\
& \left.\left.\quad-z_{\mu} \tilde{X}_{A}(t, u)+\frac{z_{\mu} t}{t} \tilde{Y}_{A}(t, u)\right] \gamma_{5}\right]_{\alpha \beta} .
\end{align*}
$$

We use light-like vectors $n_{ \pm}$so that $n_{+}^{2}=n_{-}^{2}=0, n_{+} \cdot n_{-}=2, v=\left(n_{+}+n_{-}\right) / 2$. The computation of the renormalisation properties of the distribution amplitudes requires us to consider matrix elements of the relevant operators on the light cone:

$$
\begin{align*}
O_{ \pm}^{H}(\omega) & =\frac{1}{2 \pi} \int d t e^{i \omega t}\langle 0| \bar{q}(z)[z, 0] h_{ \pm} \Gamma h_{v}(0)|H\rangle \tag{3}\\
O_{3}^{H}(\omega, \xi) & =\frac{1}{(2 \pi)^{2}} \int d t e^{i \omega t} \int d u e^{i \xi u t}\langle 0| \bar{q}(z)[z, u z] g_{s} G_{\mu v}(u z) z^{v}[u z, 0] \Gamma h_{v}(0)|H\rangle \tag{4}
\end{align*}
$$

with z parallel to n_{+}, i.e. $z_{\mu}=t n_{+, \mu}, t=v \cdot z=z_{-} / 2$ and the path-ordered exponential in the n_{+}direction: $[z, 0]=P \exp \left[i g_{s} \int_{0}^{z} d y_{\mu} A^{\mu}(y)\right]$. The Fourier transforms of the different distribution amplitudes are then defined as

$$
\begin{equation*}
\phi_{ \pm}(\omega)=\frac{1}{2 \pi} \int d t e^{i \omega t} \tilde{\phi}_{ \pm}(t), \quad F(\omega, \xi)=\frac{1}{(2 \pi)^{2}} \int d t \int d u t e^{i(\omega+u \xi) t} \tilde{F}(t, u) \tag{5}
\end{equation*}
$$

where $F=\Psi_{V}, \Psi_{A}, X_{A}, Y_{A}$. Since the renormalization of the operators is independent of the infrared properties of the matrix-elements, we can choose an on-shell partonic external state consisting of a light quark, a heavy quark and a gluon in equation (4). The resulting leading-order diagrams are shown in fig. 1 for $O_{ \pm}$(for $O_{3 \mu}$, there is only one diagram, similar to the left diagram in fig. 1). Next-to-leading order (NLO) diagrams are obtained by adding a gluon or a quark loop (or a ghost loop) in all possible places (for a complete list of diagrams, see [10]). The evaluation of these diagrams yields the corresponding anomalous dimensions at one loop.

Figure 1: The three leading-order contributions to the matrix element of $O_{ \pm}$with a three-parton external state. The white circle represents the operator and the double line corresponds to the heavy quark.

For both two-parton distribution amplitudes, the renormalization group equation to order α_{s} can then be written as:

$$
\begin{align*}
\frac{\partial \phi_{ \pm}(\omega ; \mu)}{\partial \log \mu}= & -\frac{\alpha_{s}(\mu)}{4 \pi}\left(\int d \omega^{\prime} \gamma_{-}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right) \phi_{ \pm}\left(\omega^{\prime} ; \mu\right)\right. \\
& \left.+\int d \omega^{\prime} d \xi^{\prime} \gamma_{ \pm, 3}^{(1)}\left(\omega, \omega^{\prime}, \xi^{\prime} ; \mu\right) \Psi_{3}\left(\omega^{\prime}, \xi^{\prime} ; \mu\right)\right) \tag{6}
\end{align*}
$$

where Ψ_{3} denotes the combination of three-parton distribution amplitudes mixing with the twoparton distribution amplitude of interest.

In the ϕ_{+}-case there is no mixing from three-particle distribution amplitudes: $\gamma_{+, 3}=0$ at order α_{s}. We confirm the result for the anomalous-dimension matrix found in ref. [1]

$$
\begin{equation*}
\gamma_{+}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right)=\left(\Gamma_{\text {cusp }}^{(1)} \log \frac{\mu}{\omega}+\gamma^{(1)}\right) \delta\left(\omega-\omega^{\prime}\right)-\Gamma_{\text {cusp }}^{(1)} \omega\left(\frac{\theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}\left(\omega^{\prime}-\omega\right)}+\frac{\theta\left(\omega-\omega^{\prime}\right)}{\omega\left(\omega-\omega^{\prime}\right)}\right)_{+} \tag{7}
\end{equation*}
$$

with $\left[f\left(\omega, \omega^{\prime}\right)\right]_{+}=f\left(\omega, \omega^{\prime}\right)-\delta\left(\omega-\omega^{\prime}\right) \int d \omega^{\prime} f\left(\omega, \omega^{\prime}\right), \Gamma_{\text {cusp }}^{(1)}=4$ and $\gamma^{(1)}=-2$.

The ϕ_{-}case is more involved. After including the renormalisation of the coupling constant and the wave functions there remains a genuine three-particle term, which corresponds to $\Psi_{3}=$ $\Psi_{A}-\Psi_{V}$. In eq. (6), the anomalous dimensions are $\gamma_{-}^{(1)}$, from ref. [2], and $\gamma_{-, 3}^{(1)}$, from ref. [10]:

$$
\begin{align*}
\gamma_{-}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right)= & \gamma_{+}^{(1)}-\Gamma_{\text {cusp }}^{(1)} \frac{\theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}} \tag{8}\\
\gamma_{-, 3}^{(1)}\left(\omega, \omega^{\prime}, \xi^{\prime}\right)= & 4\left[\frac { \Theta (\omega) } { \omega ^ { \prime } } \left\{\left(C_{A}-2 C_{F}\right)\left[\frac{1}{\xi^{\prime 2}} \frac{\omega-\xi^{\prime}}{\omega^{\prime}+\xi^{\prime}-\omega} \Theta\left(\xi^{\prime}-\omega\right)+\frac{\Theta\left(\omega^{\prime}+\xi^{\prime}-\omega\right)}{\left(\omega^{\prime}+\xi^{\prime}\right)^{2}}\right]\right.\right. \tag{9}\\
& \left.\left.\quad-C_{A}\left[\frac{\Theta\left(\omega^{\prime}+\xi^{\prime}-\omega\right)}{\left(\omega^{\prime}+\xi^{\prime}\right)^{2}}-\frac{1}{\xi^{\prime 2}}\left(\Theta\left(\omega-\omega^{\prime}\right)-\Theta\left(\omega-\omega^{\prime}-\xi^{\prime}\right)\right)\right]\right\}\right]_{+}
\end{align*}
$$

where we defined the + -distribution with three variables as

$$
\begin{equation*}
\left[f\left(\omega, \omega^{\prime}, \xi^{\prime}\right)\right]_{+}=f\left(\omega, \omega^{\prime}, \xi^{\prime}\right)-\delta\left(\omega-\omega^{\prime}-\xi^{\prime}\right) \int d \omega f\left(\omega, \omega^{\prime}, \xi^{\prime \prime}\right) \tag{10}
\end{equation*}
$$

A similar result can be derived concerning the three-particle LCDAs $\Psi_{A}-\Psi_{V}$ which arises in the renormalization-group equation of ϕ_{-}. We project on the relevant distribution amplitudes in equation (3) using $\Gamma=\gamma_{\perp}^{\mu} \boldsymbol{h}_{+} \not \boldsymbol{h}_{-} \gamma_{5}$ (taking γ^{μ} instead of γ_{\perp}^{μ} yields the same result). The result cqn
be cqst into C_{F} - and C_{A}-colour structures

$$
\begin{align*}
\gamma_{3,3, C_{A}}^{(1)}\left(\omega, \xi, \omega^{\prime}, \xi^{\prime}\right) & =2\left[\delta\left(\omega-\omega^{\prime}\right)\left\{\frac{\xi}{\xi^{\prime 2}} \Theta\left(\xi^{\prime}-\xi\right)-\left[\frac{\Theta\left(\xi-\xi^{\prime}\right)}{\xi-\xi^{\prime}}\right]_{+}-\left[\frac{\xi}{\xi^{\prime}} \frac{\Theta\left(\xi^{\prime}-\xi\right)}{\xi^{\prime}-\xi}\right]_{+}\right\}\right. \\
& +\delta\left(\xi-\xi^{\prime}\right)\left\{\left[\frac{\Theta\left(\omega-\omega^{\prime}\right)}{\omega-\omega^{\prime}}\right]_{+}+\left[\frac{\omega}{\omega^{\prime}} \frac{\Theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}-\omega}\right]_{+}\right\}+\delta\left(\omega+\xi-\omega^{\prime}-\xi^{\prime}\right) \\
& \times\left\{\frac{1}{\xi^{\prime}} \Theta\left(\omega-\omega^{\prime}\right)-\left[\frac{\Theta\left(\omega-\omega^{\prime}\right)}{\omega-\omega^{\prime}}\right]_{+}-\left[\frac{\omega}{\omega^{\prime}} \frac{\Theta\left(\omega^{\prime}-\omega\right)}{\omega^{\prime}-\omega}\right]_{+}\right\} \\
& +\delta\left(\omega+\xi-\omega^{\prime}-\xi^{\prime}\right) \frac{1}{\xi^{\prime}\left(\omega^{\prime}+\xi^{\prime}\right)}\left\{\frac{\omega-\xi^{\prime}}{\xi^{\prime}}\left(\omega^{\prime}+\xi^{\prime}-\omega\right) \Theta\left(\omega-\omega^{\prime}\right)\right. \\
& -\frac{\omega}{\omega^{\prime}}\left(\omega^{\prime}+2 \xi^{\prime}-\omega\right) \Theta\left(\omega^{\prime}-\omega\right) \Theta(\omega)+\frac{\omega}{\xi^{\prime}}\left(\omega-\xi^{\prime}\right) \Theta\left(\xi^{\prime}-\omega\right) \Theta(\omega) \\
& \left.\left.+\frac{\omega-\xi^{\prime}}{\omega^{\prime}}\left(\omega^{\prime}+\xi^{\prime}-\omega\right) \Theta\left(\omega-\xi^{\prime}\right) \Theta(\xi)\right\}\right] \tag{11}
\end{align*}
$$

$$
\gamma_{3,3, C_{F}}^{(1)}\left(\omega, \xi, \omega^{\prime}, \xi^{\prime} ; \mu\right)=\gamma_{+}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right) \delta\left(\xi-\xi^{\prime}\right)+\gamma_{R 3,3}^{(1)}\left(\omega, \xi, \omega^{\prime}, \xi^{\prime}\right)
$$

$$
\gamma_{R 3,3}^{(1)}\left(\omega, \xi, \omega^{\prime}, \xi^{\prime}\right)=4 \delta\left(\omega+\xi-\omega^{\prime}-\xi^{\prime}\right)
$$

$$
\times\left[\frac{\xi^{2}}{\omega^{\prime}} \frac{\Theta\left(\omega^{\prime}-\xi\right)}{(\omega+\xi)^{2}} \Theta(\xi)+\frac{\omega}{\xi^{\prime}} \frac{\Theta\left(\xi-\omega^{\prime}\right)}{\omega+\xi} \Theta(\omega)\left(\frac{\xi}{\omega+\xi}-\frac{\omega-\xi^{\prime}}{\xi^{\prime}}\right)\right]
$$

with $\gamma_{+}^{(1)}$ is given in eq. (7) and $\gamma_{3,3}^{(1)}$ defined as in (2.11) with obvious changes. Part of this calculation, namely the light-quark-gluon part, has been calculated in a different context and a different scheme, e.g. in [12, 13].

We turn to two applications of our results now. In ref. [7] two equations from the light- and heavy-quark equations of motion were derived

$$
\begin{equation*}
\omega \phi_{-}^{\prime}(\omega ; \mu)+\phi_{+}(\omega ; \mu)=I(\omega ; \mu), \quad(\omega-2 \bar{\Lambda}) \phi_{+}(\omega ; \mu)+\omega \phi_{-}(\omega ; \mu)=J(\omega ; \mu) \tag{12}
\end{equation*}
$$

where $I(J)(\omega ; \mu)$ are integro-differential expressions involving the three-particle LCDAs $\Psi_{A}-\Psi_{V}$ $\left(\Psi_{A}+X_{A}\right.$ and $\left.\Psi_{V}\right)$ respectively. While the second equation was shown not to hold beyond leading order in ref. [2,9] we have checked that the first one is valid once renormalization is taken into account by taking the derivative of the first equation with respect to $\log \mu$, and exploiting the respective evolution kernels eqs. (7), (9), (11), (12). This non-trivial outcome gives us further confidence concerning the renormalization group properties of the LCDAs.

The presence of $\delta\left(\omega-\omega^{\prime}\right) \log (\mu / \omega)$ in the renormalization matrices gives rise to a radiative tail falling off like $(\log \omega) / \omega$ for large ω. Therefore non-negative moments of the LCDAs are not well defined and have to be considered with an ultraviolet cut-off [1, 2, 8, 9]:

$$
\begin{equation*}
\left\langle\omega^{N}\right\rangle_{ \pm}(\mu)=\int_{0}^{\Lambda_{U V}} d \omega \omega^{N} \phi_{ \pm}(\omega ; \mu) \tag{13}
\end{equation*}
$$

For ϕ_{-}it is interesting to examine the limit

$$
\begin{equation*}
\lim _{\Lambda_{U V} \rightarrow \infty} \int_{0}^{\Lambda_{U V}} d \omega \omega^{N} z_{-, 3}^{(1)}\left(\omega, \omega^{\prime}, \xi^{\prime}\right)=0, \quad z_{-, 3}^{(1)}=\frac{1}{2 \varepsilon} \gamma_{-, 3}^{(1)} \tag{14}
\end{equation*}
$$

which is relevant for the calculation of the three-particle contributions to the moments:

$$
\begin{align*}
\int_{0}^{\Lambda_{U V}} d \omega \omega^{N} \phi_{-}(\omega ; \mu)= & 1+\frac{\alpha_{s}}{4 \pi}\left(\int d \omega^{\prime} \phi_{-}\left(\omega^{\prime}\right) \int_{0}^{\Lambda_{U V}} d \omega \omega^{N} z_{-}^{(1)}\left(\omega, \omega^{\prime} ; \mu\right)\right. \tag{15}\\
& \left.-\int d \omega^{\prime} d \xi^{\prime}(2-D)\left[\Psi_{A}-\Psi_{V}\right]\left(\omega^{\prime}, \xi^{\prime}\right) \int_{0}^{\Lambda_{U V}} d \omega \omega^{N} z_{-, 3}^{(1)}\left(\omega, \omega^{\prime}, \xi^{\prime}\right)\right) .
\end{align*}
$$

Therefore as stated in ref. [2] three-particle distribution amplitudes give only subleading contribution to the first two moments $(N=0,1)$. We have explicitly checked that this statement cannot be extended to higher moments $(N \geq 2)$.

The next step consists in using the renormalization properties as a guide to go beyond the existing models derived from a leading-order sum-rule calculation resulting in $\Psi_{A}=\Psi_{V}$ [6] and to analyze their influence on ϕ_{-}. Finally, for practical calculations involving three-particle contributions, one would need the evolution kernels for the relevant LCDAs, which will be the subject of a future work.

Acknowledgments

Work supported in part by EU Contract No. MRTN-CT-2006-035482, "FLAVIAnet" and by the ANR contract "DIAM" ANR-07-JCJC-0031.

References

[1] B. O. Lange and M. Neubert, Phys. Rev. Lett. 91 (2003) 102001 [arXiv:hep-ph/0303082].
[2] G. Bell and T. Feldmann, JHEP 0804 (2008) 061 [arXiv:0802.2221 [hep-ph]].
[3] V. M. Braun, D. Y. Ivanov and G. P. Korchemsky, Phys. Rev. D 69, 034014 (2004) [arXiv:hep-ph/0309330].
[4] A. G. Grozin and M. Neubert, Phys. Rev. D 55, 272 (1997) [arXiv:hep-ph/9607366].
[5] A. Khodjamirian, T. Mannel and N. Offen, Phys. Lett. B 620 (2005) 52 [arXiv:hep-ph/0504091].
[6] A. Khodjamirian, T. Mannel and N. Offen, Phys. Rev. D 75 (2007) 054013 [arXiv:hep-ph/0611193].
[7] H. Kawamura, J. Kodaira, C. F. Qiao and K. Tanaka, Phys. Lett. B 523 (2001) 111 [Erratum-ibid. B 536 (2002) 344] [arXiv:hep-ph/0109181].
[8] S. J. Lee and M. Neubert, Phys. Rev. D 72 (2005) 094028 [arXiv:hep-ph/0509350].
[9] H. Kawamura and K. Tanaka, Phys. Lett. B 673, 201 (2009) [arXiv:0810.5628 [hep-ph]].
[10] S. Descotes-Genon and N. Offen, JHEP 0905 (2009) 091 [arXiv:0903.0790 [hep-ph]].
[11] N. Offen and S. Descotes-Genon, arXiv:0904.4687 [hep-ph].
[12] A. P. Bukhvostov, G. V. Frolov, L. N. Lipatov and E. A. Kuraev, Nucl. Phys. B 258 (1985) 601.
[13] I. I. Balitsky and V. M. Braun, Nucl. Phys. B 311 (1989) 541.

[^0]: *Speaker.

