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We measure the renormalized coupling in the Twisted Polyakov loop scheme for SU(3) gauge

theory coupled withNf = 12 fundamental fermions. To find the infrared fixed point of this theory,

we focus on the step scaling function for the renormalized coupling. We take the continuum limit

using the linear function of(a/L)2 and a constant fit function. We find that there is a sizeable

systematic error due to the choice of the continuum extrapolation function in the low energy

region. We will give some directions to reduce the systematic errors.
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1. Introduction

Discovering the fixed point and the critical phenomena around it are one of the intriguing
subjects in quantum field theory. The fixed point is defined by the zero point of the beta function of
the theory, and there the theory exhibits scale invariance. Some of them are exactly solvable. The
values of the coupling constant at the fixed point depend on the renormalization scheme. In general,
changing the renormalization scheme corresponds to the coordinate transformation in theory space.
Thus, the renormalization group flows are changed by this transformation, but the existence of fixed
point and whose critical exponents are not changed[1, 2].

Recently, there have been many papers concerning the fixed point search and the study of
phase structure of SU(N) gauge theory with a large number of flavors. The perturbativeβ function
indicates the existence of non-trivial infrared (IR) fixed points for a certain range of the number of
large-flavor (Nf ) SU(N) gauge theories, which is so-called “conformal window". Possible appear-
ance of these IR fixed points has stimulated phenomenological studies of topics such as dynamical
electro-weak symmetry breaking and unparticle physics.

The existence of these IR fixed points depends on the gauge group, the number of flavors,
and the representation of fermion fields. For SU(3) gauge theory with fermions in the fundamental
representation, such a fixed point has been predicted in the range 8< Nf ≤ 16 using perturbation
theory [3]. However, the value of the renormalized coupling may be in the regime where per-
turbation theory is not applicable. There are some analytical studies with improvements of the
perturbation for the search for the lower bound of the conformal window, and the largest one give
a prediction thatNf ≤ 12 is out of the window[4].

One of the nonperturbative approaches to this subject is a lattice simulation, and there are
some recent studies concerning it. First such lattice study for SU(3) gauge theory was carried out
in Ref. [5], where the authors investigated the phase structure of the case ofNf = 16. Appelquist
et al. performed lattice calculation of the running coupling constant in the Schrödinger functional
(SF) scheme and discovered evidence of an IR fixed point in the case ofNf = 12 [6]. On the other
hand, Fodoret al. does not obtain a signal of IR fixed point using the different scheme based on
the Wilson loop[7, 8]. The difficulty is mainly due to scheme dependence of the running coupling
constant and the presence of significant lattice artifacts in the strong-coupling regime. Therefore
it is important to measure the running coupling in different renormalization schemes, and estimate
the dicretization error carefully.

In this work, we perform lattice simulation of the running coupling constant for the funda-
mental representation,Nf = 12, SU(3) gauge theory. Similar to the approach of Appelquistet al.,
we measure the step scaling functionσ(s,g2(L)) = g2(sL) keeping the values of bare coupling
constant (β ) that give constant renormalzed coupling (g2(L)) for each small lattice size. We work
in the Twisted Polyakov Loop (TPL) scheme which does not containO(a/L) discretization errors.
This TPL scheme was first proposed by de Divitiiset al. [9, 10] for SU(2) gauge theory, and we
extend the definition of the scheme to the SU(3) case[11].

In this paper, we give a short review of TPL scheme in §.2. Our preliminary results forNf = 12
SU(3) gauge theory is reported in §.3. In the last section, we discuss some ways of improvements
to reduce the discretization error and show the future direction to search for the IR fixed point.
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2. Twisted Polyakov loop (TPL) scheme

In this section, we present the definition of the Twisted Polykov Loop scheme in SU(3) gauge
theory. This is an extension of the SU(2) case as discussed in Ref. [9]. To define the TPL scheme,
we introduce twisted boundary condition for the link variables inx andy directions on the lattice:

Uµ(x+ ν̂L/a) = ΩνUµ(x)Ω†
ν . (ν = x,y) (2.1)

Here,Ων are the twist matrices.The gauge transformation for link variablesUµ(r)→Λ(r)Uµ(r)Λ†(r+
µ̂) and eq.(2.1) imply the gauge transformation at boundary with a twisted gauge matrix:

Λ(r + ν̂L/a) = ΩνΛ(r)Ω†
ν . (2.2)

Because of this twisted boundary condition, the definition of Polyakov loops in the twisted direc-
tions are modified,

Px(y,z, t) = Tr

(
[∏

j

Ux(x= j,y,z, t)]Ωxe
i2πy/3L

)
, (2.3)

in order to satisfy gauge invariance and translation invariance, and similary fory-direction.
The renormalized coupling in TPL scheme is defined by taking the ratio of Polykov loop

correlators in the twisted (Px) and the untwisted (Pz) directions:

g2
TP =

1
k

⟨∑y,zPx(y,z,L/2a)Px(0,0,0)†⟩
⟨∑x,yPz(x,y,L/2a)Pz(0,0,0)†⟩

. (2.4)

At tree level, this ratio of Polyakov loops is proportional to the bare coupling. The proportionality
factork is obtained by analytically calculating the one-gluon-exchange diagram. To perform this
analytic calculation, we choose the explicit form of the twist matrices [12], and in the case of SU(3)
gauge group we foundk∼ 0.03184 [11].

To introduce the fermions which satisfy both the twisted boundary condition and translation
invariance on the lattice, we have to introduce additional “smell" degree of freedom and indentify
the fermion field as aNc×Ns matrix (ψa

α (x)), whereNc andNs are the numbers of color and smell
degrees of freedom respectively [13]. Then we impose the twisted boundary condition for fermion
fields to be

ψa
α(x+ ν̂L/a) = eiπ/3Ωab

ν ψb
β (Ων)

†
βα (2.5)

for ν = x,y directions. Here, the smell index can be considered as a “flavor” index, then the number
of flavors should be a multiple ofNs(= Nc = 3). We use staggered fermion in our simulation. This
contains four tastes for each flavour. This enables us to perform simulations with a multiple of
12-flovors in this SU(3) gauge theory with twisted boundary condition.

At the end of this section, we would like to remark on the center symmetry of this theory. The
generator of the symmetry is given byz= exp(2π ik/3), k = 0,1,2 for SU(3) gauge theory. Al-
though the Wilson gauge action is invariant under the following transformation for the link variable
for each direction,

Uµ(t, x⃗)→ zUµ(t, x⃗), (2.6)
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the fermion action is not invariant. Therefore the vacuum expectation values of operator atz= 1
and atz= exp(±2π i/3) are different. In the simulation, we generated the gauge configurations
at nontrivial vacua where the vacuum expectation value of Polyakov loop correlator in untwisted
direction has a nontrivial phase. We also investigated the one-loop effective potential for each
vacuum analytically, and found the nontrivial one is the true vacuum[14].

3. Simulation detail

3.1 Simulation set up

The gauge configurations are generated by the Hybrid Monte Carlo algorithm, and we use the
Wilson gauge and the staggered fermion action. To reduce large statistical fluctuation of the TPL
coupling, as reported in Ref. [15], we measure Polyakov loops at every Langivin step and perform a
jackknife analysis with large bin size, typically ofO(103). This enables us to evaluate the statistical
error correctly. The simulations are carried out with several lattice sizes (L/a= 4,6,8,10,12,16) at
more than twentyβ values in the range 4.5≤ β ≤ 20. We generate 50,000–100,000 configurations
for each(β ,L/a) combination.
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Figure 1: TPL renormalized coupling in the eachβ andL/a in Nf = 12. The right figure shows the detail
behavior in lowβ region.

Figure 1 shows theβ dependence of the renormalized coupling in TPL scheme at various
lattice sizes. The results can be fitted at each fixed lattice size to the interpolating function

g2
TP(β ) =

C1

β
+

C2

β 2 +
C3

β 3 +
C4

β 4 , (3.1)

whereCi are the fit parameters.
The right figure in Fig.1 shows the detailed behavor of low-beta region. We find thatg2

TP

increases monotonously with the increase of the lattice sizes within the whole range ofβ examined.
This holds even atβ = 4.5 This is in the contrast to the case of Schorödinger functional scheme
where the renormalized coupling exhibits some “crossing" behavior [6].

3.2 The continuum extrapolation and the scaling function

We investigate the growth rate of TPL coupling in the continuum limit within the step scaling
method. The procedure of the step scaling is first to find a set of bare coupling constant (β ) for
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each small lattice size, which gives an input value of renormalized coupling (g2(β ,a/L) = u). Next,
we measure the step scaling functionΣ(u,s,a/sL) = g2(β ,sL/a)|g2(β ,a/L)=u. Finally, we take the
continuum limit and obtain the step scaling functionσ(s,u) in the continuum.

σ(s,u) = lim
a→0

Σ(u,s,a/sL)|g2(L)=u. (3.2)

In our study, we useL/a = 4,5,6,8 as a small lattice size of the step scaling, and estimate the
coupling constant forL/a= 5 from interpolations at the fixedβ using the interpolation fit results of
the lattice sizesL/a= 4,6,8. The step scaling parameter iss= 2, thus a large lattice size of the step
scaling isL/a= 8,10,12,16. From now, we denote the step scaling functionσ(s= 2,u)≡ σ(u).

The total error of the step scaling function can be estimated by the sum of the statistical error
from each data and the systematic errors. The systematic errors have two origins. One of them is
included in each data valueΣ(u,s,a/sL), in which the value ofβ that is tuned to giving an inputu
have the error. The other one comes from the continuum extrapolation. If we measure the running
behavior of coupling constant, the systematic error which comes fromβ -tuning is accumulated.
However, we can carry out each step-scaling procedure independently for a givenu. We focus on
the growth rate of the renormalized coupling for several values ofu. And, if the running coupling
constant reaches the fixed point, the growth rateσ(u)/u should be 1.

Now, we have to consider the statistical error and the systematic error which come from the
continuum extrapolation. To estimate the systematic error, we take the continuum limit using both
a constant fit and a linear function in(a/L)2. In the case of quenched QCD, we found that the

Figure 2: The continuum limit ofg2
TP with s= 2. In the left figure, each line denotes a linear fit function of

(a/L)2. The statistical error bars are of the same size of the symbols (less than 3%). The each input value
of TPL coupling (u= g2

TP(L/a)) is u= 2.36,2.04,1.73,1.41,1.10,0.79,0.47 from top to bottom. The right
figure shows the detailed behavior of the lowest energy scale in the left figure. The pink line denotes the value
of the input renormalized couplingu= 2.36. The green and blue lines denote the linear extrapolation for four
points (L/a= 8,10,12,16) and the constant extrapolation for three points (L/a= 10,12,16) respectively.

coupling constant of the TPL scheme exhibits scaling behavior even at the small lattice sizes, as
shown in Ref. [11]. In the case ofNf = 12, we show the continuum extrapolation and scaling
behavior for each step scaling in Fig.2. We found that the scaling behavior in the low energy
region becomes worse. The right figure in Fig.2 show the detailed behavior of the lowest energy,
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in which the input renormalized coupling isu= 2.36. We found that the data ofL/a= 8 is far from
the data of the other lattice size and there is a large scaling violation in the step fromL/a= 4 to
sL/a= 8.

Figure 3: The growth rate of the scaling function using a linear extrapolation (the left figure) and a constant
extrapolation (the right figure).

The growth rate of the scaling function (σ(u)/u) in the continuum limit is shown in Fig.3, in
which we use a linear extrapolation of(a/L)2 and a constant extrapolation.

The left figure in Fig.3 may show that the growth rate is decreasing foru & 2.2. However,
the right one shows that there is no such signal. Actually, the difference between these two extrap-
olations gives a systematic error of the renormalized coupling. At the low energy region, there is
more than 6% systematic error. The large systematic error comes from the large scaling violation
of a small lattice size, as we show in Fig.2. To reduce the systematic errors and to conclude the
existence of IR fixed point, we have to do some improvements or carry out the simulation for larger
lattice size.

4. Discussion and future direction

In this paper, we investigate the growth rate of TPL coupling in low energy regionβ ∼ 5.0.
The TPL coupling does not show the inversion of the order of lattice size even in the lowβ region.
The lattice renormalized coupling has a discretization error and it depends on the renormalization
scheme. To remove the discretization effects and to estimate the systematic error, we took the
continuum limit using two ways: a linear extrapolation of(a/L)2 and a constant extrapolation. The
statistical error is less than 3% even in a low energy region, but the systematic error is more than
6%. We cannot give a conclusive statement for the existence of the fixed point due to the large
systematic error.

To solve this difficulty and to obtain the conclusion of the fixed point search inNf = 12, there
would be several directions to take. One direction is to carry out the simulations on larger lattices.
In Ref. [16] we carry out the step scaling using a set of large lattice size,L/a = 6,8,10,12 and
sL/a= 9,12,15,18, for SU(2) eight flavor case. In that study, the continuum extrapolation behaves
nicely even in the low energy region. Second direction may be given by some improvements of the
action to reduce the discretized effect in the low energy. Third one is to estimate the discretization
error using the analytical calculation by lattice perturbation theory, and then to subtract this value
of discretization error from the lattice raw data. That may give a better scaling behavior.
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Finally, we would like to show our future direction. We have to measure the anomalous di-
mension of the field around the fixed point, if there is a fixed point in the infrared region. The
anomalous dimension of the operator on the fixed point is related with the conformal algebra of
the conformal field theory, so that it should be scheme independent. Comparision of its values
which are measured in several schemes gives a conclusive statement of the existence of the fixed
point. Furthermore, from the phenomenological motivation we expect that the fermion composite
operator has a large anomalous dimension and gives a origin of Higgs sector of standard model.
We will report a new method of measurement of the anomalous dimension in Ref. [14]
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