
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
9
0

Nc = 2 lattice gauge theories with adjoint Wilson
fermions

Hideo Matsufuru∗

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
E-mail: hideo.matsufuru@kek.jp

Yoshio Kikukawa
Institute of Physics, University of Tokyo, Tokyo 153-8092, Japan
E-mail: kikukawa@hep1.c.u-tokyo.ac.jp

Kei-ichi Nagai
Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya
University, Nagoya, 464-8602, Japan
E-mail: keiichi.nagai@kmi.nagoya-u.ac.jp

Norikazu Yamada
KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator
Research Organization (KEK), Tsukuba 305-0801, Japan, and
School of High Energy Accelerator Science, The Graduate University for Advanced Studies
(Sokendai), Tsukuba 305-0801, Japan
E-mail: norikazu.yamada@kek.jp

We investigateNc = 2 gauge theories with adjoint fermions. Motivated by simulations with

dynamical overlap fermions, we adopt two flavors of the Wilson-Dirac fermions together with

twisted mass ghosts, that setup corresponds to the topologyfixing term in the overlap simula-

tions. In this paper we focus on the adjoint representation of Wilson fermion with the Iwasaki

gauge action on a 83× 16 lattice, and explore the Aoki phase structure in theβ -M0 plane. We

observe the first order phase transition atβ = 0.8–1.0 by increasing the bare quark mass (with

negative sign convention) from the physical quark mass region. This first order transition seems

to disappear atβ = 1.2. We also investigate the phase structure around the ‘second finger’ of the

Aoki phase so as to search for the range at which the overlap fermion is simulated with locality.
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1. Introduction

In a lattice gauge theory at finite lattice spacing, there mayappear a phase structure which
does not exist in the continuum counterpart. The Aoki phase of the Wilson-Dirac fermions is a
well-known and important example of such a phase [1, 2]. In the case ofN f = 2 QCD at zero tem-
perature, chiral symmetry is spontaneously broken and three massless Nambu-Goldstone modes
(pions) appear accordingly. For the Wilson-Dirac operator, which explicitly breaks chiral sym-
metry, Aoki proposed a conjecture that the chiral limit is characterized by a second order phase
transition to a phase in which the flavor-parity symmetry is spontaneously broken. In spite of num-
bers of numerical results in accord with this picture [3], the phase structure of the Wilson-Dirac
operator is still in debate both in weak and strong coupling regimes [4, 5, 6].

In addition to studies of the Wilson-type fermions around the chiral limit, it is also impor-
tant to explore the phase structure of the Wilson-Dirac operator for an application of the overlap
fermion formulation which has an exact chiral symmetry on the lattice. The locality of the overlap
operator is guaranteed only when its Wilson-Dirac kernel has a gap [7] or its near-zero modes are
exponentially local [8, 9]. According to the argument by Golterman and Shamir [8, 9], the Aoki
phase is characterized by extended near-zero modes. This implies that the locality of the overlap
operator is satisfied when its Wilson kernel is out of the Aokiphase.

Our original motivation drawing this work is nonperturbative search for gauge theories which
exhibit nontrivial infrared fixed point and a conformal window [10]. Such a theory would give in-
sight on the so-called walking technicolor theory, which may provide alternative mechanism to the
electroweak symmetry breaking. In this context, theNc = 2 gauge theories draw much attention be-
cause the conformal-like (walking) behavior is expected with less numbers of flavors, in particular
in higher representations of fermions. While the infrared fixed point is directly explored by com-
putation of the running coupling, it may suffer from large statistical and systematic uncertainties.
An alternative approach is to examine the dynamics of spontaneous chiral symmetry breaking with
changingN f . By adopting the overlap fermions, one can simulate the theory in theε-regime and
examine possible chiral symmetry breaking through the low-lying spectrum of the overlap-Dirac
operator.

We investigate the SU(2) gauge theories with adjoint fermions. In present work, we focus on
the phase structure of the Wilson-Dirac operator, as preparation to the simulations with dynamical
overlap fermions, as well as of its own physical interests. This is an extension of our previous work
in quenched approximation [13]. While the same analysis is performed also for the fundamental
Wilson-Dirac operator, this paper concentrates on the caseof the adjoint representation.

2. Lattice setup

Motivated by dynamical overlap simulations with fixed topological charge, we adopt theN f =

2 Wilson fermions accompanied by the twisted mass ghosts [11, 12],

det

(

H2
W

H2
W +µ2

)

=

∫

Dχ†
Dχ exp[−SE ]. (2.1)

The numerator, the standard Wilson-Dirac operator with negative bare massM0, represents physical
fermions forM0 < M0c1 whereM0c1 is the smallest critical value ofM0, i.e. the left edge of the
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Aoki phase. In the case ofM0 in between the first and second fingers of Aoki phase, the numerator
of (2.1) suppresses the near-zero modes ofHW = γ5DW (−M0), and keep the topological charge
fixed by prohibiting the lowest eigenvalue to cross zero. Thetwisted mass ghost operator in the
denominator cancels the effect of the high frequency modes of HW . The existence of the latter is
main difference from previous works by other groups [14, 15,16]. Since the low energy effect
brought by the near-zero modes ofHW is not spoiled, the above action represents two flavors of
Wilson fermions when the quark mass is small enough. However, when the gap ofHW is sizable,
the system resembles the quenched system.

In simulations with overlap fermions, it is convenient to employ the action (2.1) to suppress
the near-zero modes ofHW which may deteriorate the locality of the overlap operator and make
numerical simulation costly. For this purpose we need to choose the value ofM0 in between the
first and second fingers of Aoki phase, and sufficiently away from its edges. In this case our present
setup corresponds to the quenched approximation, since theaction (2.1) does not represent physical
fermion degrees of freedom. The Wilson fermion term in Eq. (2.1) plays dynamical role only when
the corresponding quark mass is sufficiently small comparedto the twisted mass of the ghosts.

In this work, we adopt the Iwasaki gauge action and the above Wilson fermion action in the
adjoint representation. We survey the phase structure inβ -M0 plane over the range ofM0 from
physical region to the second finger of the Aoki phase.

As a probe of the Aoki phase, we first analyze the pseudoscalar(PS) meson correlator follow-
ing Ref. [9]. We introduce the twisted mass term as an external field in the Wilson-Dirac fermion
action as

SWtm = ψ̄ [DW − im1τ3γ5]ψ . (2.2)

Then in the Aoki phase, in the limit ofm1 → 0, π3 becomes massive whileπ± remain massless.
Thus we measure the PS correlator in the broken direction,

Γ(x,y) = 〈π+(x)π−(y)〉, π±(x) = iψ̄(x)γ5τ±ψ(x). (2.3)

The extracted PS meson masses with standard fitting procedure are extrapolated to vanishing
twisted mass. Vanishingmπ signals the Aoki phase.

3. Numerical result

In this work we use a lattice of size 83 × 16. We adoptβ =0.80, 0.90, 1.00, and 1.20 for
the Iwasaki gauge action andµ = 0.2 for the twisted mass ghost. For each ensemble, the HMC
algorithm is used to generate 500 configurations each separated by 10 trajectories of unit length
after 500 trajectories for thermalization. The first 100 configurations are used for the analysis of
the meson correlators. We measure the PS correlator (2.3) aswell as that of the vector (V) meson
with the point source and sink by varying bare valence quark massM0V with m1 = 0.01–0.08. The
correlators are fitted to the hyperbolic cosine form att = 6−10, and then the extracted values of
meson mass squared at smallest three values ofm1 are linearly extrapolated tom1 = 0.

Figure 1 shows the partially quenched result of the PS and V meson masses around the ‘first
finger’ of the Aoki phase structure atβ = 0.90. ForM0 ≤ 1.51, the meson masses decrease as the
bare valence massM0V increases as shown in the top panels. On the other hand, forM0 ≥ 1.52,
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Figure 1: The meson masses and PCAC quark mass results around the ‘firstfinger’ of the Aoki phase at
β = 0.90. The top panels show the partially quenched results for the PS and V meson masses vs valence
bare massM0V . The bottom-left panel shows the PS meson mass vs PCAC quark mass. The bottom-right
panel plots the PS and V meson masses for the negative PCAC quark mass region.

the slope changes discontinuously, and the meson masses with M0V crosses atM0 ≃ 1.52. This
suggests that the first order phase transition occurs aroundM0 = 1.52 and width of the Aoki phase
shrinks to zero. The first order phase transition is also indicated by the plaquette values displayed
in Fig. 2. The left panel of Fig. 2 shows the average plaquettevalues, and forβ = 0.9 there appears
a discontinuous change aroundM0 = 1.52. The right panel of Fig. 2 shows hysteresis between
M0 = 1.51 and 1.52, which also indicates that the transition is of the first order. This behavior is
consistent with other works with standard plaquette gauge action and without twisted mass ghost
[14, 15]. For definite conclusion, however, we need to investigate the volume dependence, which
is in progress as shown in the plot of the average plaquette values in Fig. 2.

The bottom-left panel of Fig. 1 plots the PS meson mass against PCAC quark mass. For
M0 ≤ 1.51, the partially quenched data behave asm2

PS ∝ mq. The top-right panel of Fig. 1 also
shows that the V meson mass stays finite at the transition whenapproaching from the smallM0V

region. These partially quenched results show the QCD-likebehavior, i.e. indicate the broken
chiral symmetry, while the PCAC mass may not be sufficiently light. More detailed analysis is
necessary to clarify the dynamics in the vicinity of the massless limit.

ForM0 ≥ 1.52 the PCAC quark mass becomes negative. The sea quark mass nearest to zero is
about 0.04 atM0 = 1.52. The bottom-right panel of Fig. 1 displays the V and PS meson masses for
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Figure 2: The left panel shows theM0 dependence of the plaquette value atβ = 0.90 and 0.80. The result
at β = 0.90 on 123× 24 is also displayed to examine the finite volume effect. The right panel shows the
hysteresis of the plaquette value betweenM0 = 1.51 and 1.52 atβ = 0.90.

M0 = 1.52 and 1.55. The ratio of the V and PS meson masses is almost constant. In Fig. 3 we show
the potential of static quarks in fundamental representation. At M0 = 1.52, fit of the result to the
form ofV (r) =C−A/r+σr results in the string tensionσ consistent with zero. ForM0 ≥ 1.52 the
values ofσ are much smaller than those atM0 ≤ 1.51 where clear confining feature is observed.
While these features are consistent with the near-conformal behavior, careful analysis is required
to distinguish from the deconfined phase, as pointed out in Refs. [14, 15, 16]. An unexpected result
is that the linear term of the static potential is much smaller even atM0 = 2.0, which is away from
the transition, since the contribution of Eq. (2.1) is expected to be small in such a region. This may
be explained by insufficient cancellation of the numerator and the denominator of Eq. (2.1) with
our choiceµ = 0.2 which causes that the low-lying modes ofHW significantly affect the dynamics.
Indeed preliminary result of simulations at smaller valuesof µ supports this explanation.

As for the second finger, we observe quite different behaviorfrom the first finger, as shown in
left panels of Fig. 4. While atM0 = 2.30 and 2.45 the partially quenched result for the PS meson
mass tend to vanish aroundM0V = 2.46–2.50, the result atM0 = 2.50 and 2.55 does not show linear
behavior nor approach to zero. This behavior may be partly explained by a following conjecture:
While this region corresponds to the Aoki phase, the Wilson fermion determinant suppresses the
near-zero modes and prevents from massless behavior with our small lattice size. To clarify the
dynamical mechanism of this behavior, the low-lying modes of the Wilson-Dirac operator are now
under investigation.

At β = 0.80 and 1.0, we observed similar behavior asβ = 0.90 around the first finger of the
Aoki phase, while atβ = 1.0 the signature of the first order phase transition becomes much milder.
Figure 5 shows the partially quenched results of the PS mesonmassβ = 1.0 and 1.2. Atβ = 1.2,
the indication of the first order transition disappear, while changing the lattice volume is necessary
to draw definite conclusion.

4. Summary

We are studying SU(2) gauge theories with two flavors of adjoint fermions. As a preparation
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Figure 3: The static quark potential in the fundamental representation atβ = 0.90.
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Figure 4: The partially quenched meson masses around the ‘second finger’ of the Aoki phase atβ = 0.90.

to simulations with overlap fermions, we adopt the Wilson fermions accompanied by the twisted
mass ghosts, and explore its phase structure in particular the location of the Aoki phase. At smaller
β values, the first order phase transition is found for the firstfinger of the Aoki phase. We also
identified the second finger of the Aoki phase, and explore thefeature of the region in between the
first and second fingers. For definite understanding of the phase structure of this theory, we need
more detailed study in particular with larger lattice volumes. Such studies are in progress, as well
as for the fundamental fermions. Simulations of SU(2) gaugetheories with overlap fermions are
also underway.

Numerical simulations were performed on Hitachi SR11000 and IBM System Blue Gene So-
lution at High Energy Accelerator Research Organization (KEK) under a support of its Large Scale
Simulation Program (No. 09/10-09). This work was supportedin part by the Grant-in-Aid of the
Ministry of Education (Nos. 20105001, 20105002, 20105005,21105503, 21540258, 22011012,
22740183), and the JSPS Grant-in-Aid for Scientific Research (S) (No. 22224003).

References

[1] S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D78, 014508 (2008) [arXiv:0803.3197 [hep-lat]].

[2] S. Aoki, Phys. Rev. D30, 2653 (1984).

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
9
0

Nc = 2 lattice gauge theories with adjoint Wilson fermions Hideo Matsufuru

1.1 1.2 1.3 1.4 1.5 1.6
M

0V

0.0

0.5

1.0

1.5

2.0
M

P
S2 (M

0V
, m

1=
0)

M
0 
=1.30

M
0 
=1.35

M
0 
=1.37

M
0 
=1.38

M
0 
=1.40

Iwasaki + ex-Wilson(adjoint)

8
3 
x 16,  β=1.00,  Pseudoscalar meson

1.0 1.1 1.2 1.3
M

0V

0.0

0.5

1.0

1.5

M
P

S2 (M
0V

, m
1=

0)

M
0 
=1.05

M
0 
=1.08

M
0 
=1.10

M
0 
=1.15

M
0 
=1.18

M
0 
=1.20

M
0 
=1.10 (12

3 
x24)

Iwasaki + ex-Wilson(adjoint)

8
3 
x 16,  β=1.20

Pseudoscalar meson

Figure 5: The partially quenched results for the PS meson masses vsM0V at β = 1.0 (left panels) and 1.2
(right).

[3] S. Aoki, Nucl. Phys. Proc. Suppl.60A, 206 (1998) [arXiv:hep-lat/9707020].

[4] E. M. Ilgenfritz, W. Kerler, M. Muller-Preussker, A. Sternbeck and H. Stuben, Phys. Rev. D69,
074511 (2004) [arXiv:hep-lat/0309057].

[5] S. Aoki et al. [JLQCD Collaboration], Phys. Rev. D72, 054510 (2005) [arXiv:hep-lat/0409016].

[6] K.-i. Nagai, G. Carrillo-Ruiz, G. Koleva and R. Lewis, Phys. Rev. D80, 074508 (2009)
[arXiv:0908.0166 [hep-lat]]; these proceedings.

[7] P. Hernandez, K. Jansen and M. Luscher, Nucl. Phys. B552, 363 (1999) [arXiv:hep-lat/9808010].

[8] M. Golterman and Y. Shamir, Phys. Rev. D68, 074501 (2003) [arXiv:hep-lat/0306002].

[9] M. Golterman, Y. Shamir and B. Svetitsky, Phys. Rev. D71, 071502 (2005) [arXiv:hep-lat/0407021];
Phys. Rev. D72, 034501 (2005) [arXiv:hep-lat/0503037].

[10] For recent review, G. T. Fleming, PoSLATTICE2008, 021 (2008) [arXiv:0812.2035 [hep-lat]];
E. Pallante, PoSLAT2009, 015 (2009) [arXiv:0912.5188 [hep-lat]]; L. Del Debbio, these
proceedings.

[11] P. M. Vranas, arXiv:hep-lat/0001006; T. Izubuchi and C. Dawson [RBC Collaboration], Nucl. Phys.
Proc. Suppl.106, 748 (2002).

[12] H. Fukaya, S. Hashimoto, K. I. Ishikawa, T. Kaneko, H. Matsufuru, T. Onogi and N. Yamada [JLQCD
Collaboration], Phys. Rev. D74, 094505 (2006) [arXiv:hep-lat/0607020].

[13] H. Matsufuru, Y. Kikukawa and N. Yamada, PoSLAT2009, 064 (2009).

[14] S. Catterall and F. Sannino, Phys. Rev. D76, 034504 (2007) [arXiv:0705.1664 [hep-lat]]; S. Catterall,
J. Giedt, F. Sannino and J. Schneible, JHEP0811, 009 (2008) [arXiv:0807.0792 [hep-lat]].

[15] A. J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, JHEP0905, 025 (2009)
[arXiv:0812.1467 [hep-lat]]; Nucl. Phys. A820, 191C (2009).

[16] L. Del Debbio, A. Patella and C. Pica, Phys. Rev. D81, 094503 (2010) [arXiv:0805.2058 [hep-lat]];
L. Del Debbio, B. Lucini, A. Patella, C. Pica and A. Rago, Phys. Rev. D80, 074507 (2009)
[arXiv:0907.3896 [hep-lat]]; Phys. Rev. D82, 014509 (2010) [arXiv:1004.3197 [hep-lat]].

7


