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1. Motivation

Isospin is a near symmetry of the hadron spectrum because the strong interaction only distin-
guishes quark flavors through their masses and the mass difference between up and down quarks is
small. This symmetry is broken by :

(i) the mass difference mu−md (mass isospin breaking)

(ii) the difference in the charge of the u and the d quark (electromagnetic isospin breaking)

u d

Mass (MeV) [1] 2.49+0.81
−0.79 5.05+0.75

−0.95

Charge 2
3 e −1

3 e

These effects are expected to be at the percent level. The size of mass breaking is the mass differ-
ence mu−md relatively to a typical QCD scale ΛQCD and the order of electromagnetic breaking is
the fine structure constant at zero momentum α = e2

4π
' 1

137 .

These effects imply mass splittings inside isospin multiplets. Although these effects are small,
they have important consequences. For example, the fact that the neutron is heavier than the proton
guarantees the stability of matter. Another interesting isospin breaking quantity is the absolute
correction to Dashen’s theorem :

∆AD = ∆EMM2
K−∆EMM2

π (1.1)

where :

∆EMM2
P = (M2

P+−M2
P0)mu=md (1.2)

is the electromagnetic squared mass splitting of the isospin multiplet P. One can also consider the
dimensionless relative correction to Dashen’s theorem :

∆RD =
∆EMM2

K

∆EMM2
π

−1 (1.3)

Dashen has shown in [2] than ∆AD = 0 in the SU(3) chiral limit and that the leading corrections
are O(αms,α

2). The quantity ∆AD is interesting because it is very sensitive to the up and down
quark masses.

An overview of the results for the violations to Dashen’s theorem corrections is presented in
Table 1. These results are interesting for two reasons : on one hand, agreement between different
calculations is poor and on the other all these numbers predict rather large corrections. We will
investigate corrections to Dashen’s theorem using a QCD+QED analysis on BMW collaboration
QCD ensembles. A first step in this direction is to formulate electromagnetism on the lattice.
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∆AD (MeV2) ∆RD

ph
en

om
en

ol
og

y 1230 0.80 [3]
1300±400 1.02±0.30 [4]

360 0.26 [5]
1060±320 0.84±0.24 [6]

1080 0.68 [7]
1070 0.85 [8]

la
tti

ce
526 0.39 [9]

340±92 0.30±0.08 [10]
1250±550 N/A [11]

Table 1: Results for the violations to Dashen’s theorem. Bold numbers are the results given by the authors,
the others are deduced from information given in the corresponding paper.

2. Electromagnetism on the lattice

We impose periodic boundary condition in a finite volume, i.e. we will define Maxwell’s theory
on a 4-torus T4. In this context, the Maxwell-Gauss equations :

3

∑
µ=0

∂µFµν = jν with Fµν = ∂µAν −∂νAµ (2.1)

imposes global electric neutrality :

Qtotal =
∫
T3

d3x j0(x) =
3

∑
k=1

∫
T3

d3x∂kFk0(x) = 0 (2.2)

One way to circumvent this global neutrality is to add a finite-volume, constant background current
density as a multiplier to the Lagrangian of the theory :

L [A](c) =
1
4

3

∑
µ,ν=0

FµνFµν +
1
V

3

∑
µ=0

LµcµAµ (2.3)

where Lµ is the length of direction µ in T4 and V = L0L1L2L3 is the 4-volume of T4. The Maxwell-
Gauss equations become :

3

∑
µ=0

∂µFµν = jν −
1
V

Lνcν (2.4)

Minimizing the action with respect to the Lagrange multiplier c yields a new Euler-Lagrange equa-
tion :

Âµ(0) =
∫
T4

d4xAµ(x) = 0 (2.5)

where the hat symbol denotes Fourier transform.
We formulate now electromagnetism on the lattice in its non-compact form (following [9]).

This is done by using forward finite differences in the Lagrangian (2.3) :

∂µ f (x) = f (x+ µ̂)− f (x) (2.6)
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This formulation has a major advantage : the photon does not self-interact. The inconvenience is
that gauge fixing becomes compulsory. We chose the following gauge conditions :{

∀p0 6= 0, Â0(p0,0) = 0
∀p, ∑

3
k=1 p̃kÂk(p) = 0

with p̃µ = 2sin
( pµ

2

)
(2.7)

This choice has the practical advantage that it allows to solve explicitely the gauge constraints
during field generation (cf. appendix of [10]).

The action S associated with the above Lagrangian is a quadratic form, so generating random
fields according to the law DA exp(−S[A]) to compute the path integral of the theory is simply a
multi-dimensional Gaussian random number drawing. This is done in momentum space, where
the correlation matrix of the law is quite sparse, and then the position representation of the field
is recovered using a Fast Fourier Transform algorithm. The associated U(1) compact field (links)
UQED

µ is then constructed in the following way :

UQED
µ = exp(iqAµ) (2.8)

where q is an electric charge.
To check the implementation of the field generation code and investigate volume dependence,

we computed semi-analytically the expectation value of the plaquette operator Pµν associated with
the field UQED

µ in an infinite volume lattice to compare it with simulation values. The results are
summarized in Figure 1. It appears that for lattice extents greater than 10 the plaquette does not
suffer from finite-volume effects and hypercubic invariance is present even with our non symmetric
gauge choice (2.7).

simulation (space,space)
simulation (space,time)

theoretical infinite volume value

− 2

q2
log(〈Pµν〉) with q = 1.0 on L4 lattices

L

50403020100

0.51

0.505

0.5

0.495

0.49

0.485

0.48

Figure 1: Logarithm of the U(1) plaquette vs. lattice extent L. The dashed blue line represents the semi-
analytical, infinite-volume prediction. The green points correspond to plaquettes aligned along the time and
a space directions and the red ones to plaquettes aligned along two perpendicular space directions.
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3. Coupling to quarks

Here we describe how to perform a QCD and quenched QED analysis by re-using previously
generated SU(3) gauge configuration. We are using N f = 2+ 1 QCD simulations with Lüscher-
Weisz gauge action, tree level O(a)-improved Wilson fermions and two steps of HEX smearing
(cf. [12, 13] for details).

Ideally one would include the U(1) degrees of freedom directly in the Hybrid Monte-Carlo.
But doing this to reproduce the wide range of parameters already explored in BMW collaboration
ensembles is extremely expensive. If, in a first instance, one accepts to quench QED, then there is
a simple way to re-use previously generated SU(3) fields. To compute the propagator of a quark q
of charge Qq ∈

{2
3 ,−

1
3

}
proceed as follows :

1. generate an electromagnetic potential Aµ as described in Section 2

2. construct the associated U(1) field UQED
µ = exp(iQqeAµ)

3. using a previously generated SU(3) field UQCD
µ , construct the U(3) field Uµ =UQED

µ UQCD
µ

4. compute the quark propagator inverting the Dirac-Wilson operator using Uµ as the gauge
field in covariant derivatives

Because Wilson fermions break chiral symmetry explicitly, they require an additive renormal-
ization in the quark masses. This additive renormalization has already been accounted for in our
pure QCD simulation. However, in the presence of an extra U(1) gauge interaction, we expect an
additional additive renormalization term, that will have to be subtracted, of order O(Q2

q
α

a ) where
a is the lattice spacing. While suppressed by α , this divergence may still be large because it is
enhanced by a−1. Moreover, this correction breaks the mass isospin symmetry of our N f = 2+ 1
simulations, since Qu 6= Qd . We have chosen to subtract this divergence by retuning the bare u and
d quark masses in such a way that the renormalized masses are equal. Thus, we substract a quantity
Q2

qδ from each bare quark mass and tune δ to a value δc where isospin symmetry is recovered. This
isospin tuning works very well, as shown in Figure 2.

Everything is now ready to perform a QCD+QED analysis in the mass isospin limit to inves-
tigate the violations to Dashen’s theorem.

4. Preliminary results

Here are our first preliminary results, using the following subset of the BMW collaboration
QCD ensembles :

β m0
ud m0

s size Nconf ∼Mπ (MeV) MπL

3.31 −0.08500 −0.04 32×163 218 420 4.05
3.31 −0.09300 −0.04 48×243 128 300 4.26
3.31 −0.09530 −0.04 48×243 210 250 3.61
3.31 −0.09756 −0.04 48×323 130 200 3.86
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d
u

pure QCD ud

Mass isospin tuning (32× 163, β = 3.31, msea,0

ud = −0.085, msea,0
s = −0.04)

−δ (MeV)
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Figure 2: PCAC light quark masses vs. −δ . The behaviour in δ appears to be perfectly linear. One can sees
the large contribution of the a−1 additive renormalization at δ = 0, where no substraction is applied.

This subset contains a single lattice spacing estimated to be a ' 0.116 fm (a−1 ' 1.7 GeV), one
strange quark mass approximatively tuned to its physical value and four pion masses, from 420 MeV
down to 200 MeV. Clover improvement is done only on SU(3) fields.

Time correlators of π0, π+, K0 and K+ are constructed by contracting quarks propagators
computed as described in Section 3. The π0 correlator, is constructed by averaging the uū and
dd̄ pseudoscalar propagators, neglecting disconnected contributions. These contributions are sub-
leading in α and mu−md . The mass of a pseudo-Goldstone meson is extracted fitting its time
correlator to a hyperbolic cosine. The square of this mass is then extrapolated to the physical π+

mass (Mφ

π+ = 139.57018 MeV) using a Taylor expansion around Mφ 2
π+ (as done for [14]) :

M2
P(M

2
π+) = Mφ 2

P

[
1+

n

∑
k=0

ck(M2
π+−Mφ 2

π+ )
k

]
(4.1)

With this methodology, the previously described QCD ensembles and a linear extrapolation yield
the preliminary results (quoted errors are statistical only) :

Mπ0 = 134.5±1.1 MeV

∆EMMπ = 5.1±1.1 MeV

∆EMM2
π = 1380±50 MeV2

MK+ = 501.3±2.0 MeV

MK0 = 499.0±2.0 MeV

∆EMMK = 2.2±0.2 MeV

∆EMM2
K = 2200±180 MeV2

∆AD = 830±180 MeV2

∆RD = 0.60±0.14
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5. Conclusion

The preliminary results obtained in Section 4 validate our methodology and clearly encourage
us to perform much more detailed calculations (lower quark masses, several lattice spacing, differ-
ent volumes, etc. ) to gain control over systematic errors and to extend these calculations to other
interesting hadronic observables.
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