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The light hadron masses have been extensively and quite successfully studied in lattice QCD
simulations [1,2]. However, the study of strong decays remains a challenge that only a few ex-
ploratory calculations have addressed so far [3,4].

Until recently this issue could be ignored: firstly because the sea quarks required for a multi-
body decay are not present in the quenched approximation, and then because energy conservation
leaves little or no phase space in those decays for unphysically large light quark masses. But as we
get closer to the physical point and improve our precision, this issue has to be addressed for us to
be able to reliably determine masses of resonant states. Additionally, it is an exciting way to test
the characteristic dynamical effects of sea quarks.

A formalism waq developped by Liischer [5-9], and extended to moving frames [10], which
describes the modification of the finite-volume quantization condition of scattering-state momenta
under interactions. We use this framework to compute the rho decay width on a subset of the
Budapest-Marseille-Wuppertal collaboration configurations [12,13], which features improved Wil-
son fermions with Ny = 2+ 1 flavors of sea quarks.

1. Introducing the two-pions levels

1.1 Basics of avoided crossings

If p were not coupled to w7, the spectrum as a function of box size L would only consist of :

e ap state, whose energy would be a constant m, up to exponentially suppressed finite-volume
corrections [5], and

e free two-pion states, whose momenta k= (2m/L)#, and energies E = \/ m2 + K2 are quan-
tized.

For some particular box sizes the p states crosses one of the free two-pions states. At these points
we would have a degeneracy but nothing particular would happen. But if now we turn on interac-
tions, the situation becomes very different: we know from quantum mechanics that two eigenstates
cannot cross. The interaction mixes p and 7 into new eingenstates which exhibit an avoided
level crossing phenomenon (Fig. 1). These avoided crossings therefore contain information on the
coupling between the states, and hence on the p width.

1.2 Liischer’s Formula

In a finite box we expect the pions to interact then propagate over small distance, then interact
again, and so on. This can be represented as an expansion in a series of two-particles-irreducible
kernels as shown in Fig. 2. When this expansion is resummed, the interactions move F poles
(free two-pions states) to 1 — MF zeros [11]. The zeros of 1 — MF correspond to the solutions of
Liischer’s formula, which was first derived in [6].

Liischer’s formula is only valid below the 47 inelastic threshold. Expressed in a form exhibit-
ing its role of quantization condition, it reads (up to exponentially small terms in mzL):

®(q) =nn—95(q), (1.1
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Figure 1: Finite-volume spectrum in the / = J = 1 channel as a function of mL, for m, /mz = 3, neglecting
exponentially suppressed corrections. The dash lines depict the free spectrum and the solid lines show its
deformation with increasing 7w7-p coupling g, from green to red. (The model used is described in Sec. 1.3.)

Figure 2: Here we represent the finite-volume correction of an arbitrary correlator, computed under the
inelastic threshold up to exponentially small corrections. M is the infinite-volume amputated four-point
function, while F is the difference between finite-volume loops and infinite-volume ones. M is obtained as
a resummation of a volume-independant series of 2-particle-irreducible kernels.

using the reduced momentum ¢ = kL/27 and the O phase shift in the / = J = 1 channel. ® is
a known kinematical function of ¢, expressing the breaking of rotational invariance by the cubic
box [8].

1.3 The g-coupling model

Liischer’s equation gives us the phase shift for a few discrete values of the momentum, de-
termined by the parameters of the simulation. It would be difficult and very costly numerically to
significantly increase the number of such momenta. Therefore we need a model to reconstruct the
phase shift from a few points. Following [9] we use both an effective range approximation and an
effective lagrangian %, rr = g€upcPy; nPotme.

The effective range approximation parametrizes the phase shift in terms of a Taylor expan-
sion around kp = \/E?/4 —m%, which is is the momentum that p’s decay products would have in

infinite-volume:
S 2 42
W cotd = b(k™ — k). (1.2)

The second ingredient allows us to parametrize the coupling of the p to &7 states in terms of
a constant coupling g that should have a rather small dependance on the quark mass. On the other
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hand the width Iy, is strongly dependant on kinematics:

2 k3

8 p
Iy==>-.-—/. 1.3
P~ 6rn m,% (1.3

Using experimental values for the masses and the width (1.3) yields g ~ 6.0 [9].

2. Results with a single interpolating operator

The formulae (1.2) and (1.3) can be combined into a very simple form, giving the correction
to get the p mass from the energy E of an arbitrary eigenstate in the / = J = 1 channel:

213 2

k E
ml = E> - %E cob(kL/2m)  where k= /= —m} @.1)

In this expression, the unknowns are m, and g. Instead of using two energy levels at a given
quark mass, one can extract the ground state energy level at different quark masses. But the kine-
matics required in that case are contradictory: on the one hand we would get no signal for the width
if the state is far below the first free two-pion state; on the other hand, near the first crossing one
cannot disentangle the contributions of the p mass and width to the measured energy level.

In [1] we considered only situations on which the ground state obtained with a single operator
is far from the first crossing. Thus, in combined fits of our 6-stout data, we obtained a precise
determination of m, (my, ~ 5%), but a much less precise determination of g: g =9.5+4.6.

3. Using two interpolating operators

3.1 Generalized Eigenvalue Problem

We now briefly present the principle of extraction of several energies using a variational
method [7]. Let us first assume that we are computing observables only affected by N eigenstates.
We show that the N energies can be computed from an N x N matrix of cross-correlators

Cij(t)=(0| O;(t)0;(0) | 0), withi,j=1...N. 3.1

We first decompose them on the energy eigenstates and express them in a compact matrix form:

Gij(t) = Y (0| Gi[n)e ™" (n| O;]0) (3.2)
= Z(V%)i,m 'Dm,n(t> ' Vn,ja (33)

so Vj, j is the nth-state content of the &; operator and D is a diagonal matrix containing the expo-
nentials of the energies. Now we immediatly see that C(t)C~!(to) is diagonal in the eigenbasis:

C(1)C (1) = VID(@)V (VD)) ' = (VD —10) (V) (3.4)
and its eigenvectors give the energies through:

A = e Eil=10), (3.5)
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Figure 3: The contractions of 7w — w7 (top), #w — p (bottom-left) and p — w7 (bottom-right), the
p — p being trivial. Time flows upward from O to . Black dots represent an explicit summation whereas
shaded dots represent a noise-noise contact. Between those dots we can have Q propagators (one line) or W
propagator (two lines).

This is exact if and only if the operators are linearly independent (so we can invert the V's). Note
that in the case N = 1 this is simply the effective mass method.

In practice we can only compute the matrix of operators obtained from a few N operators.
Thus only the N low-lying levels are asymptotically known, and higher levels are treated as a con-
tamination at short times. The energies are computed with errors of order exp[(Ey — Eyn+1)t] and
exp[(Ex — En+1)to], so t and to must be large (r — 1 is not very important, since it only enters in
polynomial prefactors). A more precise study of higher-level corrections on some derived quanti-
ties is made in [7].

3.2 Operators and contractions

To implement the generalized eigenvalue approch described above, we consider two operators.
The first is the point p meson operator

pi = iYu—dyd. (3.6)

The second operator is constructed from two, local pion-operators, to give it a better coupling to
scattering states:

ani(,4) = (pi—q) [7" (P)n (§) — 7~ ()7 (3)] 3.7
Then, the cross-correlator is computed by contracting stochastic propagators. Following [3] we use
two kinds of propagators:

Q%1 G.t:,8)) = ZD_](J? 13,15) - [eP7E; ()], (3.8)
Wt |kt | Got) = ZD $67.0) [ s0E 0 | 4.1, (3.9)

where the §;(y) are three-dimensional, random U (1) sources. The contractions are described in
Fig. 3, and here we make explicit the first one :

G}T%%p Ze " ?< X t | O tYa&]) (X,t ‘ _ﬁ'/[S | _Zja[A&'7éj)’}/5’y3>- (310)
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Figure 4: Components of generalized eigenvectors, normalized and obtained from operators normalized
so that (0 | €(1)0(0) | 0) = 1. The eigenvectors are very sensitive to both higher-level contamination
and statistical errors. For ¢ < 6 higher-state contamination is obvious, but for 6 < < 9 or even more the
eigenvectors are constant as should be.

4. Preliminary results

We use the simulation setup of the Budapest-Marseille-Wuppertal collaboration [1, 14] with
2 levels of HEX smearing [12, 13, 15], featuring Ny = 2 + 1 flavors of tree-level improved Clover
fermions [14] and the tree-level improved Liischer-Weisz gauge action [16]. We choose two simu-
lations, for which the two lowest-lying scattering states are near the crossing.

The first point is for m,; ~ 200 MeV, with B = 3.31 and a = 0.116 fm on a 323 x 48 lattice.
Contractions were computed in the center-of-mass frame P= (0,0,0), in which the p mass nearly
crosses the (0,0,27 /L) (0,0, —2m /L) free two-pion state.

The other point has m; ~ 340 MeV, with B = 3.31 and a = 0.116 fm. Here, the lattice size
is 243 x 48. The analysis is performed in the moving frame P = (0,0,27/L), in which the p can
nearly “decay” into 7(0,0,27/L)7(0,0,0).

Using Eq. (2.1) on the two energies obtained with the variational method, we get (see Fig. 4
and 5):

g=55+29 for the m; ~ 200MeV point, 4.1)
g=66+34 for the m; ~ 340MeV point, 4.2)

where the error is purely statistical. Combining the two results, we obtain the very preliminary
estimate

g = 6.0+2.2(stat.), (4.3)

which agrees with the experimental value given after Eq. (1.3).
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Energies at m_=340MeV
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Figure 5: The two energies obtained from solving generalized eigenvalue problem show a clean plateau,
and their energy difference is significant. The same goes for m; = 200 MeV.
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