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We study the gluon propagator in the Landau gauge in SU(3) lattice QCD atβ=5.7, 5.8 and

6.0 at the quenched level. The Euclidean Landau-gauge gluon propagatorD(r) ≡ Daa
µµ(x)/24 is

found to be well described by four-dimensional Yukawa-type functione−mr/r in the infrared and

intermediate region ofr ≡ (xµxµ)
1/2 = 0.1∼ 1.0fm. The infrared effective gluon mass is obtained

asm≃ 600MeV. Associated with the 4D Yukawa-type gluon propagator, we derive analytical

expressions for the zero-spatial-momentum propagatorD0(t), the effective massMeff(t), and the

spectral functionρ(ω) of the gluon field. Remarkably, the obtained gluon spectral functionρ(ω)

is almost negative definite, except for a positiveδ -functional peak atω = m. Since the Yukawa-

type propagation indicates a three-dimensional space-time character, we consider a hypothesis

of an effective dimensional reduction by generalized Parisi-Sourlas mechanism in a stochastic

color-magnetic vacuum of infrared QCD.
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1. Introduction

The analysis of gluon properties is an important key point to clarify the nonperturbative aspects
of QCD [1, 2, 3]. In particular, the gluon propagator,i.e., the two-point Green function is one of the
most basic quantities in QCD, and has been investigated with much interests [1, 4, 5]. Dynamical
gluon-mass generation is also an important subject related to the infrared gluon propagation. While
gluons are perturbatively massless, they are conjectured to acquire a large effective mass as the
self-energy through their self-interaction in a nonperturbative manner [3, 6]. Actually, glueballs,
color-singlet bound states of gluons, are theoretically predicted to be fairly massive,e.g., about
1.5GeV for the lowest 0++ and about 2GeV for the lowest 2++, in lattice QCD calculations [7].

For the direct investigation of the gluon field, gauge fixing is to be done. Among gauges,
the Landau gauge is one of the most popular gauges in QCD, and it keeps Lorentz covariance and
global SU(Nc) symmetry. In Euclidean QCD, the Landau gauge has a global definition to minimize
the global quantityR≡

∫
d4x Tr{Aµ(x)Aµ(x)}= 1

2

∫
d4xAa

µ(x)A
a
µ(x) by gauge transformation. The

local condition∂µAµ(x) = 0 is derived from the minimization ofR. The global quantityR can be
regarded as “total amount of the gluon-field fluctuation” in Euclidean space-time. In the global def-
inition, the Landau gauge has a clear physical interpretation that it maximally suppresses artificial
gauge-field fluctuations relating to gauge degrees of freedom [1].

In lattice QCD, the Landau gauge is defined by the maximization ofRlatt ≡ ∑x ∑µ ReTrUµ(x),
with the link-variableUµ(x) ≡ eiagAµ (x) (a: lattice spacing,g: QCD gauge coupling). The gluon
field is defined asAµ(x) ≡ 1

2iag{Uµ(x)−U†
µ(x)}− (trace part). In the Landau gauge, the mini-

mization of gluon-field fluctuations justifies the expansion by small lattice spacinga. In Euclidean
metric, the gluon propagator is defined by the two-point function asDab

µν(x− y) ≡ ⟨Aa
µ(x)A

b
ν(y)⟩.

Here, owing to the symmetries and the transverse property, the color and Lorentz structure of the
gluon propagator is uniquely determined in the Landau gauge.

In this paper, using SU(3) lattice QCD Monte Carlo calculations, we study the functional
form of the Landau-gauge gluon propagator,D(r) ≡ 1

3(N2
c−1)D

aa
µµ(x) =

1
3(N2

c−1)⟨A
a
µ(x)A

a
µ(0)⟩, as

a function of 4D Euclidean distancer ≡ (xµxµ)
1/2. We mainly deal with the coordinate-space

propagatorD(r) for the infrared and intermediate region ofr = 0.1∼ 1.0fm, which is relevant for
quark-hadron physics. Based on the obtained function form of the gluon propagator, we aim at a
nonperturbative description of gluon properties,

2. Functional form of Landau-gauge gluon propagator

The SU(3) lattice QCD Monte Carlo calculations are performed at the quenched level using
the standard plaquette action withβ ≡ 2Nc/g2=5.7, 5.8, and 6.0, on the lattice size of 163×32,
203×32, and 324, respectively. The lattice spacinga is found to bea= 0.186,0.152, and 0.104fm,
at β = 5.7, 5.8, and 6.0, respectively, when the scale is determined so as to reproduce the string
tension as

√
σ = 427MeV from the static Q̄Q potential [8]. Here, we choose the renormalization

scale atµ = 4GeV forβ = 6.0, and make corresponding rescaling forβ=5.7 and 5.8 [1].
Figure 1(a) and (b) show the coordinate-space gluon propagatorD(r) and the momentum-

space gluon propagator̃D(p2) ≡
∫

d4x eip·xD(r), respectively. Our lattice QCD result ofD̃(p2) is
consistent with that obtained in previous lattice studies, although recent huge-volume lattice studies
[4] indicate a suppression of the gluon propagator in the Deep-IR region (p< 0.5GeV).
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Figure 1: (a) Lattice QCD results (symbols) of the Landau-gauge gluon propagatorD(r) ≡ Daa
µµ(x)/24 in

coordinate space, and 4D Yukawa-type functionDYukawa(r) = Ame−mr/r (solid line) withm= 0.624GeV
andA= 0.162. The dash-dotted line denotes a typical example of the massive-vector propagatorDmass(r).
(b) The Landau-gauge gluon propagatorD̃(p2) in the momentum space ofpµ = 2

a sin(πnµ
Lµ

). The solid line

denotes 4D Fourier-transformed Yukawa-type propagator,i.e., D̃Yukawa(p2) = 4π2Am(p2+m2)−3/2.

We find that the lattice gluon propagatorD(r) cannot be described by the free massive Eu-
clidean propagatorDmass(r) =

∫ d4p
(2π)4 e−ip·x 1

p2+m2 =
1

4π2
m
r K1(mr) (Kν(z): modified Bessel function)

[5] in the whole region ofr = 0.1∼ 1.0fm, as shown in Fig.1(a).
By the functional-form analysis, we find that the Landau-gauge gluon propagatorD(r) in the

coordinate space is well described by the 4D Yukawa-type function [1]

D(r)≡ 1
24

Daa
µµ(r) = Am

e−mr

r
, (2.1)

with m= 0.624(8)GeV andA= 0.162(2) in the range ofr = 0.1∼ 1.0fm, as shown in Fig.1(a). The
gluon propagator̃D(p2) in the momentum space is also well described by 4D Fourier-transformed
Yukawa-type function as̃D(p2) = 1

24D̃aa
µµ(p

2) = 4π2Am
(p2+m2)3/2 for 0.5GeV≤ p≤ 3GeV [1].

3. Analytical applications

In this section, as applications of the Yukawa-type gluon propagator, we derive analytical
expressions for the zero-spatial-momentum propagatorD0(t), the effective massMeff(t), and the
spectral functionρ(ω) of the gluon field [1]. All the derivations can be analytically performed,
starting from the Yukawa-type gluon propagatorDYukawa(r). Although the real gluon propagator
has some deviation from the Yukawa-type in UV region, this method is found to be workable to
reproduce lattice QCD results, as shown below.

3.1 Zero-spatial-momentum propagator of gluons

First, we consider zero-momentum gluon propagatorD0(t)≡ 1
24 ∑x⃗⟨Aa

µ (⃗x, t)A
a
µ (⃗0,0)⟩=∑x⃗D(r),

wherer =
√

x⃗2+ t2 is the 4D Euclidean distance. For the simple argument, we here deal with the
continuum formalism with infinite space-time. Starting from the Yukawa-type gluon propagator
DYukawa(r), we derive the zero-spatial-momentum propagator as [1]

D0(t) =
∫

d3x DYukawa(
√

x⃗2+ t2) = 4πAm
∫ ∞

0
dx

x2
√

x2+ t2
e−m

√
x2+t2

= 4πAtK1(mt). (3.1)
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Figure 2: (a) The zero-spatial-momentum propagatorD0(t) of gluons in the Landau gauge. (b) The effective
massMeff(t) of gluons in the Landau gauge. The symbols are the lattice QCD data on 324 atβ = 6.0, and the
solid line is the theoretical curve derived from 4D Yukawa-type propagator withm=0.624GeV andA=0.162.

In Fig.2(a), we show the theoretical curve ofD0(t) in Eq.(3.1) with m=0.624GeV andA=0.162,
together with the lattice QCD result ofD0(t) in the Landau gauge. For the actual comparison with
the lattice data, we take account of the temporal periodicity [1]. The lattice QCD data are found to
be well described by the theoretical curve, associated with the Yukawa-type gluon propagator.

3.2 Effective mass of gluons

Second, we investigate the effective massMeff(t) of gluons. The effective mass plot is often
used for hadrons as a standard mass measurement in lattice QCD. For the simple notation, we use
the lattice unit ofa= 1 in this subsection. In the case of large temporal size, the effective mass is
defined asMeff(t) = ln{D0(t)/D0(t +1)}.

In Fig.2(b), we show the lattice result ofMeff(t), where we take account of the temporal peri-
odicity. The effective gluon mass exhibits a significant scale-dependence, and it takes a small value
at short distances. Quantitatively, the effective gluon mass is estimated to be about 400∼ 600MeV
in the infrared region of about 1fm [1]. This value seems consistent with the gluon mass suggested
by Cornwall [3], from a systematic analysis of nonperturbative QCD phenomena.

Now, we consider the consequence of 4D Yukawa-type propagatorDYukawa(r) of gluons. For
simplicity, we here treat the three-dimensional space as a continuous infinite-volume space, while
the temporal variablet is discrete. We obtain an analytical expression of the effective mass [1],

Meff(t) = ln
D0(t)

D0(t +1)
= ln

tK1(mt)
(t +1)K1(m(t +1))

, (3.2)

when the temporal periodicity can be neglected. In Fig.2(b), we add by the solid line the theoretical
curve ofMeff(t) in Eq.(3.2) with m=0.624GeV. The lattice QCD data ofMeff(t) are found to be
well described by the theoretical curve derived from the Yukawa-type gluon propagator. From the
asymptotic formK1(z) ∝ z−1/2e−z, the effective mass of gluons is approximated as [1]

Meff(t)≃ m− 1
2

ln
(
1+

1
t

)
≃ m− 1

2t
(for large t). (3.3)
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This functional form indicates thatMeff(t) is an increasing function and approachesm from below,
ast increases. Then, the mass parameterm≃ 600MeV in the Yukawa-type gluon propagator has a
definite physical meaning of the effective gluon mass in the infrared region.

Note that the simple analytical expression reproduces the anomalous “increasing behavior” of
the effective massMeff(t) of gluons. Thus, this framework with the Yukawa-type gluon propagator
gives an analytical and quantitative method, and is found to well reproduce lattice QCD results.

3.3 Spectral function of gluons in the Landau gauge

As a general argument, an increasing behavior of the effective massMeff(t) means that the
spectral function is not positive-definite [1, 3]. More precisely, the increasing property ofMeff(t)
can be realized, only when there is some suitable coexistence of positive- and negative-value re-
gions in the spectral functionρ(ω) [1]. However, the functional form of the spectral function of
the gluon field is not yet known.

The relation between the spectral functionρ(ω) and the zero-spatial-momentum propagator
D0(t) is given by the Laplace transformation,D0(t) =

∫ ∞
0 dω ρ(ω) e−ωt . When the spectral func-

tion is given by aδ -function such asρ(ω) ∼ δ (ω −ω0), which corresponds to a single mass
spectrum, one finds a familiar relation ofD0(t) ∼ e−ω0t . For the physical state, the spectral func-
tion ρ(ω) gives a probability factor, and is non-negative definite in the whole region ofω. This
property is related to the unitarity of the S-matrix.

From the analytical expression of the zero-spatial-momentum propagatorD0(t)=4πAtK1(mt),
we can derive the spectral functionρ(ω) of the gluon field, associated with the Yukawa-type gluon
propagator [1]. For simplicity, we take continuum formalism with infinite space-time. Using the
inverse Laplace transformation of the modified Bessel function, we derive the spectral function
ρ(ω) of the gluon field as [1]

ρ(ω) =− 4πAm

(ω2−m2)3/2
θ(ω −m− ε)+

4πA/
√

2m

(ω −m)1/2
δ (ω −m− ε), (3.4)

with an infinitesimal positiveε, which is introduced for a regularization. Here,m≃ 600MeV is
the mass parameter in the Yukawa-type function for the Landau-gauge gluon propagator. The first
term expresses a negative continuum spectrum, and the second term aδ -functional peak with the
residue including a positive infinite factor asε−1/2 at ω = m+ ε.

We show in Fig.3 the spectral functionρ(ω) of the gluon field. As a remarkable fact, the
obtained gluon spectral functionρ(ω) is negative-definite for all the region ofω > m, except
for the positiveδ -functional peak atω = m. The negative property of the spectral function in
coexistence with the positive peak leads to the anomalous “increasing behavior” of the effective
massMeff(t) of gluons [1]. Actually, Eq.(3.4) leads to Eq.(3.2), which well describes the lattice
result of the effective massMeff(t), as shown in Fig.2(b).

We note that the gluon spectral functionρ(ω) is divergent atω = m+ ε , and there aretwo
divergence structures: aδ -functional peak with a positive infinite residue and a negative wider
power-damping peak. On finite-volume lattices, these singularities are to be smeared, andρ(ω)

is expected to take a finite value everywhere onω. On the lattice, the spectral functionρ(ω)

is conjectured to include a narrow “positive-valued peak” stemming from theδ -function in the
vicinity of ω = m(+ε) and a wider “negative-valued peak” nearω ≃ m in the region ofω > m [1].
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Figure 3: The spectral functionρ(ω) of the gluon field, associated with the Yukawa-type propagator. The
unit is normalized by the mass parameterm≃ 600MeV.ρ(ω) shows anomalous behaviors: it has a positive
δ -functional peak with the residue of+∞ at ω = m, and takes negative values for all the region ofω > m.

In this way, the Yukawa-type gluon propagator indicates an extremely anomalous spectral
function of the gluon field in the Landau gauge. The obtained gluon spectral functionρ(ω) is
negative almost everywhere, and includes a complicated divergence structure near the “anomalous
threshold”,ω = m (+ε). Thus, this framework with the Yukawa-type gluon propagator gives an
analytical and concrete expression for the gluon spectral functionρ(ω).

4. Effective dimensional reduction in gluonic vacuum by Parisi-Sourlas mechanism

We discuss the Yukawa-type gluon propagation and a possible dimensional reduction due to
the stochastic behavior of the gluon field in the infrared region [1]. As shown before, the Landau-
gauge gluon propagator is well described by the Yukawa function infour-dimensional Euclidean
space-time. However, the Yukawa functione−mr/r is a natural form inthree-dimensional Euclidean
space-time, since it is obtained by the three-dimensional Fourier transformation of the ordinary
massive propagator(p2+m2)−1. In fact, the Yukawa-type propagator has a “three-dimensional”
property. In this sense, as an interesting possibility, we propose to interpret this Yukawa-type
behavior of the gluon propagation as an “effective reduction of the space-time dimension”.

Such a “dimensional reduction” sometimes occurs in stochastic systems, as Parisi and Sourlas
pointed out for the spin system in a random magnetic field [9]. In fact, on the infrared dominant
diagrams, theD-dimensional system coupled to the Gaussian-random external field is equivalent
to the(D−2)-dimensional system without the external field, due to a hidden SUSY structure.

We note that the gluon propagation in the QCD vacuum resembles the situation of the system
coupled to the stochastic external field. Actually, as is indicated by a large positive value of the
gluon condensate⟨Ga

µνGµν
a ⟩= 2(H2

a−E2
a)> 0 in the Minkowski space, the QCD vacuum is filled

with a strong color-magnetic field [10], which can contribute spontaneous chiral-symmetry break-
ing [11], and the color-magnetic field is considered to be highly random at the infrared scale. Since
gluons interact with each other, the propagating gluon is violently scattered by the other gluons in
the randomly-oriented color-magnetic fields of the infrared QCD vacuum, as shown in Fig.4.

Actually at the infrared scale, the gluon field shows a strong randomness due to the strong
interaction, and this infrared strong randomness is considered to be responsible for color confine-
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Figure 4: A schematic figure for a propagating gluon. The QCD vacuum is filled with color-magnetic fields
which are stochastic at an infrared scale, and the gluon propagates in the random color-magnetic fields.

ment, as is indicated in strong-coupling lattice QCD. Even after the removal of fake gauge degrees
of freedom by gauge fixing, the gluon field exhibits a strong randomness accompanying a quite
large fluctuation at the infrared scale.

As a generalization of the Parisi-Sourlas mechanism, we conjecture that the infrared structure
of a theory in the presence of quasi-random external fields in higher-dimensional space-time has
a similarity to the theory without the external field in lower-dimensional space-time [1]. From
this point of view, the Yukawa-type propagation of gluons may indicate an “effective reduction of
space-time dimension” by one, reflecting the interaction between the propagating gluon and the
other gluons in randomly-oriented color-magnetic fields in the infrared QCD vacuum.

In any case, it is an interesting and important subject to clarify the nonperturbative QCD
vacuum structure in terms of gluonic properties [2] including the gluon propagation [1].
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