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1. Introduction

Radiative and rare semileptonicB-meson decays have been extensively studied at theB fac-
tories, LEP and the TeVatron. New results from the LHCb are expected soon. The number of
interesting observables is quite large. The prominent one isB(B̄ → Xs,dγ) with a certain lower cut
E0 on the photon energy. It provides the simplest way to constrain the SM-like loop-generatedbsγ
coupling. Moments of the photon spectrum in this inclusive decay can be tested against predictions
based on non-perturbative HQET parameters determined from the semileptonic B̄ → Xclν̄ spec-
tra. Isospin asymmetries are very small in the SM, and unlikely to be modified by new physics.
However, their precise measurement would remove one of the most importantnon-perturbative un-
certainties in the SM prediction for the total rate. Mixing-induced CP-asymmetriesare also very
small in the SM due to the left-handed photon dominance in the decay amplitude. Their measure-
ment puts bounds on possible opposite-chirality operators in the effectiveLagrangian. Finally, the
d/s ratio (i.e.B(B̄ → Xdγ)/B(B̄ → Xdγ)) provides interesting information onVtd/Vts.

For the closely related inclusivēB → Xs,dl+l− decay, we may consider the same observables
as forB̄ → Xs,dγ, just replacing the photon energy by the lepton pair one. However, more options
are available thanks to the four-body kinematics. In particular, studying various observables as
functions of the dilepton invariant mass squaredq2 = m2

l+l− , we can extract relative contributions
from several effective operators. The forward-backward (FB)asymmetry is even more efficient in
this respect. Apart from the total rate and the FB-asymmetry (as functions of q2), another inclusive
observable could provide independent information. Using three alternative observables calledHT ,
HA andHL has been advocated in Ref. [1].

In the exclusiveB→V γ case (V = K⋆,ρ,ω), the decay widths are quite uncertain on the theory
side. However, many uncertainties cancel in the isospin and CP asymmetries,as well as in thed/s
ratios. In the latter case,B(B → ρ0γ)/B(B → K⋆γ) is most useful from the theory standpoint. Its
current effect on the overall CKM fit is miniscule due to large experimentalerrors, but nevertheless
it gives us a non-trivial consistency check.

From the LHCb perspective, the most interesting channels are the exclusive B → Kl+l− and
B→K⋆l+l− modes. In the latter case, whenK0⋆ decays toK+π−, high-statistics angular analysis is
possible despite the small overall branching ratio (∼ 10−6). Properly chosen integrated observables
can be used to efficiently constrain potential new physics effects.

The current status and future perspectives of the radiative and raresemileptonicB decays have
been thoroughly reviewed in a very recent paper by T. Hurth and M. Nakao [2]. In this talk, I will
concentrate on just a couple of observables.

2. The effective theory

A convenient framework to analyze processes which take place at scales µ ∼ mb or lower
is an effective theory that arises after decoupling ofW , Z, t, H0 and all the Beyond-Standard-
Model (BSM) particles with massesmi ≫ mb. Assuming that all the relevant BSM particles can be
decoupled, we obtain an effective Lagrangian of the form

Leff = LQCD×QED(u,d,s,c,b;e,µ,τ) +
4GF√

2
∑

i

f i
CKMCiQi + (dim≥ 6 operators). (2.1)
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Figure 1: Operator vertices that are relevant forb → sγ andb → sl+l−. In addition to them, double-gluon
vertices ofQ8 andQ ′

8 enter beyond the leading order in QCD.

Here,Qi are operators of dimension 5 or 6, whileCi are their Wilson coefficients. In the SM or any
weakly-coupled BSM theory,Ci are perturbatively calculable functions of masses, couplings and
renormalization scales.

Fig. 1 contains a collection of operator vertices that are relevant forb → sγ andb → sl+l−, un-
der the assumption that no relevant BSM effects occur in the four-quarksector. In the SM, only the
operatorsQ1–Q10 from the first two columns matter. These statements hold up toO

(

m2
s/m2

b,αem
)

corrections.

3. ExclusiveB̄0 → K̄0⋆l+l−.

The exclusive decaȳB0 → K̄0⋆l+l− followed by K̄0⋆ → K−π+ is particularly interesting be-
cause many independent constraints on the Wilson coefficients can be extracted from the full angu-
lar distribution of this decay chain. The differential decay width is conveniently written as follows:

d4Γ
dq2 d cosθl d cosθK dφ

=
9

32π
J(q2,θl,θK ,φ), (3.1)

where

J(q2,θl,θK ,φ) = J1s sin2 θK + J1c cos2 θK +
(

J2s sin2 θK + J2c cos2 θK
)

cos2θl

+ J3sin2 θK sin2 θl cos2φ + J4sin2θK sin2θl cosφ + J5sin2θK sinθl cosφ

+
(

J6s sin2 θK + J6c cos2 θK
)

cosθl + J7sin2θK sinθl sinφ

+ J8sin2θK sin2θl sinφ + J9sin2 θK sin2 θl sin2φ . (3.2)

3
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Figure 2: Angle definitions in theB̄0 → K̄0⋆l+l− differential spectrum.

Here,q2 is the dilepton invariant mass squared, while the meaning of the angles is explained in
Fig. 2. The important conventions to remember are thatθl is measured in the dilepton c.m.s.,θK

— in theK−π+ c.m.s., andφ — in the B̄0 rest frame. The formula in Eq. (3.2) corresponds to a
narrow peak approximation for̄K0∗.

The quantityJ(q2) in Eq. (3.2) can be expressed in terms of complex spin amplitudesAL,R
⊥ ,

AL,R
‖ , AL,R

0 , (At , AS, . . . ) that depend linearly on the Wilson coefficients andq2-dependent form-

factors. In the largeEK∗ limit (mK∗/EK∗ ∼ Λ/mb ≪ 1) only two form-factorsξ⊥(q2) andξ‖(q2)

remain, up toO(αs,Λ/mb) effects (see e.g. Ref. [3]). Taking this fact into account, it is possible
to derive constraints on the Wilson coefficients by considering ratios of thespin amplitudes in
which the form-factorsξ cancel out. Next, one can fit those ratios to data using various weighted
integrals of the measured angular distribution. There are obviously very many options for applying
this algorithm in practice, and a whole industry devoted to such analyses hasdeveloped in the past
few years.

The most recent step forward has been made in Ref. [4]. Four (real) relations between the spin
amplitudes have been identified. Next, ratios like

A(2)
T =

|AL
⊥|2 + |AL

⊥|2−|AL
‖ |2−|AR

‖ |2

|AL
⊥|2 + |AL

⊥|2 + |AL
‖ |2 + |AR

‖ |2
=

2
[

Re(C′
10C

∗
10)+F2Re(C′

7C
∗
7)+FRe(C′

7C
∗
9)

]

|C10|2 + |C′
10|2 +F2

(

|C7|2 + |C′
7|2

)

+ |C9|2 +2FRe
(

C7C∗
9

) ,

A(5)
T =

|AL
⊥AR∗

‖ +AR∗
⊥ AL

‖ |
|AL

⊥|2 + |AL
⊥|2 + |AL

‖ |2 + |AR
‖ |2

SM
=

1
2

(FC7 +C9)
2−C2

10

(FC7 +C9)
2 +C2

10

(3.3)

were considered includingO(Λ/mb) uncertainties in their numerical values. Here,F = 2mbmB/q2,
while C7 andC9(q2) stand for the so-called “effective” coefficients [5]. A sample effect of the
BSM-modified Wilson coefficients onA(5)

T is shown in Fig. 3. Its dependence onq2 in the SM (for
C9 ∼−C10∼ 4) is compared to a situation where eitherC′

10 or ∆CNP
9 ≡CBSM

9 −CSM
9 is set to 2eiπ/8.

It is evident that an accurate enough determination ofA(5)
T is going to provide important constraints

on models where new contributions to the Wilson coefficients are of the same order as the SM ones.
However, if the BSM effects give only small corrections to the SM values, and no new operators
arise (like in the MSSM with Minimal Flavour Violation (MFV)), then theO(Λ/mb) uncertainties
will most probably make such effects unobservable in the considered exclusive decay.

4
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Figure 3: The ratioA(5)
T for eitherC′

10 or ∆CNP
9 set to 2eiπ/8 (Fig. 16 from Ref. [4]).

4. Combined constraints on the Wilson coefficients

Apart from considering future prospects for particular decay modes,it is interesting to verify
what constraints on the Wilson coefficients can be derived by combining several well-determined
observables in the radiative and rare semileptonicB decays. Such a question has recently been
analyzed in Ref. [6]. Six observables were taken into account, namelyB(B̄ → Xsγ), S(B → K∗γ),
B(B̄→Xsl+l−)1−6GeV2, FL(B̄0 → K̄∗µ+µ−)1−6GeV2, AFB(B̄0 → K̄∗µ+µ−)1−6GeV2 and S5(B̄0 →
K̄∗µ+µ−)1−6GeV2. The CP-averaged forward-backward asymmetryAFB and the asymmetry called
S5 are proportional to the following angular integrals:

AFB(q2) ∼
(

d(Γ+ Γ̄)

dq2

)−1[

∫ 1

0
−

∫ 0

−1

]

d cosθl
d2(Γ+ Γ̄)

dq2 d cosθl
,

S5(q
2) ∼

(

d(Γ+ Γ̄)

dq2

)−1[

∫ π/2

0
−

∫ 3π/2

π/2
+

∫ 2π

3π/2

]

dφ
[

∫ 1

0
−

∫ 0

−1

]

d cosθl
d2(Γ+ Γ̄)

dq2 d cosθl dφ
.

(4.1)

Sample scatter plots from Ref. [6] describing constraints onCNP
7 , C′

7, CNP
9 andC′

10 are shown
in Fig. 4 (CNP

i ≡ Ci −CSM
i ). In the first row, current measurements have been used for all the

considered observables (exceptS5, for which no data are available yet). The second row shows a
projection for LHCb after analyzing 2fb−1 of integrated luminosity, and with inclusion ofS5. A
semi-random walk algorithm has been used to test 2.5×105 sets of the Wilson coefficient values.
The SM central values have been assumed for them in the LHCb projection case. The red points are
allowed at 68% C.L., while the remaining ones are shown in blue. Three examples corresponding
to particular models with specific parameters are shown by the black dot, green square and blue
triangle. These are respectively the SM, the MFV MSSM with extra CP-violating phases, and a
certain non-MFV MSSM. Obviously, the SM black dot is at the origin(0,0) in all the plots, and
it sometimes gets covered by the green square. It is consistent with all the studied observables,
giving χ2/nD.O.F = 0.35. The two non-BSM scenarios are marginally allowed by the current data,
and definitely excluded in the LHCb projection case. The power of rare decay observables and
interesting prospects for the future are thus convincingly illustrated.
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Figure 4: Constraints on the Wilson coefficientsCNP
7 , C′

7, CNP
9 andC′

10 from Ref. [6]. In the first row, the
currently available data have been used. The second row shows a projection for LHCb after analyzing 2fb−1

of integrated luminosity (see the text).

5. Inclusive B̄ → Xsγ

The current experimental world averages for theB̄ → Xsγ branching ratio withEγ > 1.6GeV
in the decaying meson rest frame read:

B(B̄ → Xsγ) =

{

(

3.55±0.24exp±0.09model
)

×10−4 [7],
(

3.50±0.14exp±0.10model
)

×10−4 [8].
(5.1)

They have been obtained by combining the measurements of CLEO [9], BABAR [10] and BELLE [11]
with different lower cutsE0 on the photon energy, ranging from 1.7 to 2.0GeV. An extrapolation
in E0 down to 1.6GeV has been performed simultaneously.

Calculations includingO(α2
s ) andO(αem) effects in the SM give [12, 13]

B(B̄ → Xsγ) = (3.15±0.23)×10−4, (5.2)

where the error is found by adding in quadrature the non-perturbative(5%), perturbative (3%+3%)
and parametric (3%) uncertainties. The result in Eq. (5.2) is consistent withthe averages (5.1) at the
1.2σ level. Its evaluation is based on an approximate equality of the hadronic and perturbatively
calculable partonic decay widths

Γ(B̄ → Xsγ)Eγ >E0
≃ Γ(b → X p

s γ)Eγ >E0
, (5.3)

whereX p
s stands fors, sg, sgg, sqq̄, etc. This approximation works well only in a certain range

of E0, namely whenE0 is large (E0 ∼ mb/2) but not too close to the endpoint (mb −2E0 ≫ ΛQCD).
Corrections to Eq. (5.3) of various origin have been widely discussed in the literature, most recently
in Ref. [14].

6
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Figure 5: Examples of Feynman diagrams that contribute toG77, G78 andG27 at O(α2
s ). Dashed vertical

lines mark the unitarity cuts.

The relevant Wilson coefficients at the scaleµb ∼ mb/2 are presently known up to the Next-to-

Next-to-Leading Order (NNLO) in QCD, i.e. up toO
(

α2
s

(

αs ln MW
mb

)n)

n=0,1,2,3,...
. The necessary

matching [15] and anomalous dimension [16] calculations involved Feynman diagrams up to three
and four loops, respectively. The partonic decay rate is evaluated according to the formula

Γ(b → X p
s γ)Eγ >E0

= N
8

∑
i, j=1

Ci(µb)C j(µb)Gi j(E0,µb), (5.4)

whereN = |V ⋆
tsVtb|2(G2

Fm5
bαem)/(32π4). At the NNLO, it is sufficient to restrict our attention to

i, j ∈ {1,2,7,8} because the penguin operators have very small Wilson coefficients (|C3,5,6(µb)| <
|C4(µb)| ∼ αs(µb)/π). In the following, we shall treat the two similar operatorsQ1 andQ2 as a
single one (represented byQ2), and consider six independent cases ofGi j at the NNLO.

Three of those six cases (G77, G78 andG27) involve the photonic dipole operatorQ7. Examples
of the corresponding contributions to the decay rate are shown in the subsequent columns of Fig. 5
as propagator diagrams with unitarity cuts. WhileG77 was found already several years ago [17],
the complete calculation ofG78 has been finalized only very recently [18]. Evaluation ofG27 is
still in progress (see below).

The remaining three cases (G22, G28 andG88) receive contributions from diagrams like those
displayed in Fig. 6. Two-body final state contributions (first row) are just products of the known
NLO amplitudes. Three- and four-body final state contributions remain unknown at the NNLO
beyond the BLM approximation [19]. The BLM calculation for them has beencompleted very
recently [20] providing new results forG88 andG28, and confirming the old ones [21] forG22. The
overall NLO + (BLM-NNLO) contribution to the decay rate from three- andfour-body final states
in G22, G28 andG88 remains below 4% due to the phase-space suppression by the relatively high
photon energy cutE0. Thus, the unknown non-BLM effects here can hardly cause uncertainties that
could be comparable to higher-orderO(α3

s ) uncertainties in the dominant terms (G77 andG27).
It follows that the only contribution that is numerically relevant but yet unknown at the NNLO

is G27. So far, it has been evaluated for arbitrarymc in the BLM approximation [22, 21] sup-
plemented by quark mass effects in loops on the gluon lines [23]. Non-BLM terms have been

7
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Figure 6: Examples of Feynman diagrams that contribute toG22, G28 andG88 atO(α2
s ).

calculated only in themc ≫ mb/2 limit [13, 24], and then interpolated downwards inmc using
BLM-based assumptions atmc = 0. Such a procedure introduces a non-negligible additional un-
certainty to the calculation, which has been estimated at the±3% level in the decay rate.

As a first attempt to improve the situation, a calculation ofG27 at mc = 0 has been under-
taken [25]. Two- and three-particle cut contributions have already been found [26]. A recently
started calculation [27] for arbitrarymc is supposed to cross-check themc = 0 result and, at the
same time, make it redundant, because no interpolation inmc will be necessary any more. The
method to be used is the same as in the BLM calculation of Ref. [23].

As far as the non-perturbative effects are concerned, the question towhat accuracy the approx-
imate equality (5.3) holds has been subject of many investigations since early 1990’s. However, a
quantitative analysis of all the dominant contributions to the resulting uncertainty in B(B̄ → Xsγ)

has been performed only very recently [14]. Corrections to Eq. (5.3) are minimized at a certain “op-
timal” value ofE0 that is high enough (E0∼mb/2) but not too close to the endpoint (mb−2E0≫Λ).
The value ofE0 = 1.6GeV≃ mb/3 has a chance to be in the vicinity of the optimal point. In the
following, I will discuss non-perturbative effects at this very cutoff, leaving aside the problem of
photon energy extrapolation in the experimental averages.

So long as only the photonic dipole operatorQ7 is considered, non-perturbative corrections
to Eq. (5.3) formb − 2E0 ≫ Λ can be described in terms of the so-called fixed-order approach
that has been derived [28] using the optical theorem and the Operator Product Expansion. The
corrections can then be written as a series in(Λ/mb)

nαk
s with n = 2,3,4, . . . andk = 0,1,2, . . .,

where perturbatively calculable coefficients multiply matrix elements of local operators between
theB-meson states at rest. Such matrix elements (at least the leading ones) can beextracted from
measurements of observables that are insensitive to new physics, like the semileptonicB̄ → Xceν
decay spectra or mass differences between variousb-flavored hadrons. Coefficients at the terms of
orderΛ2/m2

b andΛ3/m3
b have been evaluated in Refs. [29] and [30], respectively. Very recently, a

calculation at orderαsΛ2/m2
b has been completed [31]. Thus, non-perturbative corrections to the

"77" interference term are well under control.

The most important non-perturbative uncertainty originates from the "27"interference term
(that stands for "27" and "17"). In Ref. [14], photons that can be treated in analogy to the “77” term

8
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2 7 2 7 2 7

Figure 7: Examples of diagrams describing non-perturbative contributions to the “27” interference term due
to soft gluons originating from theB-meson initial state.

are called “direct”, while all the other ones are called “resolved”, i.e. produced far away from the
b-quark annihilation vertex. Contributions from the resolved photons can still be written in terms
of a series in powers of(Λ/mb)

nαk
s , but this time the(n = 1,k = 0) term is non-vanishing whenmc

is treated asO(
√

Λmb). Moreover, they are uncertain, as they depend on matrix elements of non-
local operators that cannot be easily extracted from other measurements. Diagrams representing
such terms are displayed in Fig. 7, where the external gluon is understoodto be soft, while the
other one (if present) is considered to be non-soft.

If the charm quark was heavy enough (m2
c/mb ≫ Λ), its loop in the first diagram of Fig. 7

would become effectively local for soft gluons, and we would be back tothe local operator de-
scription, as in the “77” term. This limit has been analyzed in Refs. [32]. A series of the form

∞

∑
n=0

bnO

(

Λ2

m2
c

(

mbΛ
m2

c

)n)

(5.5)

was found as a relative correction to Eq. (5.3). Explicit results for all thecoefficientsbn showed
that they are small and quickly decreasing withn, which led to a conclusion that the first term in the
series is a good approximation to the whole correction even in thembΛ/m2

c ∼O(1) case. This con-
clusion has recently been questioned in Ref. [14] on the basis of realistic shape function models that
allowed to varymc in the physically interesting range, and test applicability of the expansion (5.5).
It has been found that the first term of such an expansion in not really agood approximation if we
allow for alternating-sign subleading shape functions (see Eq. (108) in that paper). This is the main
source of the overall±5% non-perturbative uncertainty in the branching ratio that was estimated in
Ref. [14]. So long asmc is treated asO(

√
Λmb), the considered correction is justO(Λ/mb). Other

(smaller) corrections studied in that paper were of orderO(αsΛ/mb).
In the end, let us recall that there exist non-perturbative correctionsto Eq. (5.3) that are not

suppressed byΛ/mb at all. Their intuitive description can be found in Ref. [33]. In particular,
collinear photon emission effects belong to this class [34, 20]. Fortunately,they are numerically
small due to interplay of several minor suppression factors.

6. Summary

Measurements and calculations of radiative and rare semileptonicB decays have a long history
but still offer realistic chances for improvements that could significantly strengthen constraints on
the BSM theories. Many observables matter for models with sizeable new CP-violating phases or
large deviations from the MFV hypothesis. In the MFV models with no new phases andO(1TeV)

masses, precision measurements ofB→ µ+µ− andB̄→Xsγ are crucial. In the latter case, reduction
of uncertainties by a factor of 2 on both the theoretical and experimental sides is feasible in the
Super-B era.

9



P
o
S
(
F
P
C
P
 
2
0
1
0
)
0
2
5

Radiative and Rare Semileptonic B Decays Mikołaj Misiak

References

[1] K. S. M. Lee, Z. Ligeti, I. W. Stewart and F. J. Tackmann, Phys. Rev. D75 (2007) 034016
[hep-ph/0612156].

[2] T. Hurth and M. Nakao, arXiv:1005.1224.

[3] M. Beneke and T. Feldmann, Nucl. Phys. B592(2001) 3 [hep-ph/0008255].

[4] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, arXiv:1005.0571.

[5] M. Misiak, Nucl. Phys. B393, 23 (1993), Nucl. Phys. B439, 461 (1995) (E).

[6] A. Bharucha and W. Reece, Eur. Phys. J. C69 (2010) 623 [arXiv:1002.4310].

[7] D. Asneret al. (Heavy Flavor Averaging Group), arXiv:1010.1589.

[8] M. Artuso, E. Barberio and S. Stone, PMC Phys. A3 (2009) 3 [arXiv:0902.3743].

[9] S. Chenet al. (CLEO Collaboration), Phys. Rev. Lett.87 (2001) 251807 [hep-ex/0108032].

[10] B. Aubertet al. (BABAR Collaboration), Phys. Rev. D72 (2005) 052004 [hep-ex/0508004]; Phys.
Rev. Lett.97 (2006) 171803 [hep-ex/0607071]; Phys. Rev. D77 (2008) 051103 [arXiv:0711.4889].

[11] K. Abe et al. (BELLE Collaboration), Phys. Lett. B511(2001) 151 [hep-ex/0103042]; A. Limosaniet
al. (Belle Collaboration), Phys. Rev. Lett.103(2009) 241801 [arXiv:0907.1384].

[12] M. Misiak et al., Phys. Rev. Lett.98 (2007) 022002 [hep-ph/0609232].

[13] M. Misiak and M. Steinhauser, Nucl. Phys. B764(2007) 62 [hep-ph/0609241].

[14] M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP1008(2010) 099 [arXiv:1003.5012].

[15] C. Bobeth, M. Misiak and J. Urban, Nucl. Phys. B574(2000) 291 [hep-ph/9910220]; M. Misiak and
M. Steinhauser, Nucl. Phys. B683(2004) 277 [hep-ph/0401041].

[16] M. Gorbahn and U. Haisch, Nucl. Phys. B713(2005) 291 [hep-ph/0411071]; M. Gorbahn, U. Haisch
and M. Misiak, Phys. Rev. Lett.95 (2005) 102004 [hep-ph/0504194]; M. Czakon, U. Haisch and
M. Misiak, JHEP0703(2007) 008 [hep-ph/0612329].

[17] K. Melnikov and A. Mitov, Phys. Lett. B620(2005) 69 [hep-ph/0505097]; I. R. Blokland,
A. Czarnecki, M. Misiak, M.́Slusarczyk and F. Tkachov, Phys. Rev. D72 (2005) 033014
[hep-ph/0506055]; H. M. Asatrian, A. Hovhannisyan, V. Poghosyan, T. Ewerth, C. Greub and
T. Hurth, Nucl. Phys. B749(2006) 325 [hep-ph/0605009]; H. M. Asatrian, T. Ewerth, A. Ferroglia,
P. Gambino and C. Greub, Nucl. Phys. B762(2007) 212 [hep-ph/0607316]; H. M. Asatrian,
T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B647(2007) 173 [hep-ph/0611123].

[18] H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola, arXiv:1005.5587; T. Ewerth, Phys.
Lett. B 669(2008) 167 [arXiv:0805.3911].

[19] S. J. Brodsky, G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 28 (1983) 228.

[20] A. Ferroglia and U. Haisch, arXiv:1009.2144; M. Misiakand M. Poradzínski, arXiv:1009.5685.
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