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1. Introduction

The vacuum of the quantized Yang–Mills gauge field theory contains most information about
its distinct features like confinement, chiral symmetry breaking, etc. In the Hamiltonian formula-
tion, this information is carried by the ground-state wavefunctional. In temporal gauge, in(d+1)
dimensions, the problem looks very simple: One strives to solve the Schrödinger equation

Ĥ Ψ0[A] =
∫

ddx

{

−1
2

δ 2

δAa
k(x)

2 +
1
4Fa

i j (x)
2
}

Ψ0[A] = E0Ψ0[A] (1.1)

with an additional constraint that physical states are invariant under infinitesimal local gauge trans-
formations (Gauß’ law):

(

δ ac∂k+gεabcAb
k

) δ
δAc

k

Ψ[A] = 0. (1.2)

Subtleties of this problem were outlined more than 30 years ago by one of us (J.G.) [1]. It
was argued that at large distance scales one expects the wavefunctional to assume the so called
dimensional-reduction form:

Ψeff
0 [A]≈ exp

[

−µ
∫

ddx Fa
i j (x)F

a
i j (x)

]

, (1.3)

i.e. a vacuum with color-magnetic fields fluctuating independently in each spacetime point. In such
a case the computation of a spacelike loop in(d+1) dimensions reduces to the calculation of a
Wilson loop in Yang–Mills theory ind Euclidean dimensions. If the property existed for Yang–
Mills theories(3+1) and(2+1) dimensions, then these would be confining, since the theory in 2
euclidean dimensions exhibits the area law.1 However, the dimensional-reduction form cannot be
the whole story, it does not provide correct short-distance structure of the theory.

As a step forward, Greensite [2] proposed a systematic strong-couplingexpansion of the Yang–
Mills vacuum wavefunctional in the form:

Ψ0[U ] = N exp(R[U ]), (1.4)

where the functionR in the exponential is an expansion in terms of closed loops – products of link
variablesU along closed contours on the lattice:

R[U]   =     

+   larger contours.

contours

0c +   c  1 +    c  2 +    c   3

(1.5)
It was later shown by Guo, Chen and Li [3] that for smoothly varying gauge fields the first terms
of the expansion are expressed through the color magnetic field strength,Ba(x) = Fa

12(x), and the
covariant laplacian in the adjoint representation,D2 = Dk ·Dk, whereDk[A] denotes the covariant
derivative in the adjoint representation:

R[U ] ∝ − 1
β
(

aκ0Tr [B2]−a3κ2Tr [B(−D
2)B]+ . . .

)

, (1.6)

1In the rest of this paper, we will discuss exclusively the case of(2+1) dimensions.
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where

κ0 =
1
2c0+2(c1+c2+c3), κ2 =

1
4c1 with c0 = O(β 2), c1,c2,c3 = O(β 4). (1.7)

With only a few exceptions (see references in [4]), there was not much work done in this
area after the initial efforts. However, recently interest in the problem ofthe Yang–Mills vacuum
wavefunctional has been revived and various plausible proposals for the vacuum states have been
advanced. We will present tests of two of them which differ by their motivation but share some
common features. More results and other proposals will be covered elsewhere [4].

2. Two proposals

With a grain of imagination one can assume that an expansion of the form (1.6)might result
from a vacuum wavefunctional

Ψ0[A]=N exp

[

−1
2

∫

d2xd2y Ba(x) Kab
xy [−D

2] Bb(y)

]

(2.1)

with a kernel depending on the gauge couplingg and the adjoint covariant laplacian. That kernel
cannot be arbitrary – one should be able to reproduce the QED vacuum wavefunctional [for SU(2)
in (2+1)-dimensional spacetime] forg→ 0, which is known to be [5]:

Ψ0[A] ∝ exp

{

−1
2

∫

d2xd2y [∇×A(x)]

(

1√
−∇2

)

xy
[∇×A(y)]

}

. (2.2)

The kernel has thus to satisfy the condition:

lim
g→0

Kab
xy [−D

2] =

(

δ ab

√
−∇2

)

xy
. (2.3)

The above condition is, by construction, satisfied by the approximate vacuum wavefunctional
proposed recently by the present authors [6]:

ΨGO[A]=N exp



−1
2

∫

d2xd2y Ba(x)

(

1
√

(−D2−λ0)+m2

)ab

xy

Bb(y)



 . (2.4)

Hereλ0 denotes the lowest eigenvalue of(−D2), andm is a constant (mass) parameter proportional
to g2 ∼ 1/β . It is similar to a proposal by Samuel [7]; the difference lies in the subtraction of λ0

which is crucial, since(−D2) has a positive-definite spectrum and we have hints that its lowest
eigenvalue diverges in the continuum limit.

The supporting evidence for this proposal comes from four sources [6, 8]:
1. The proposed form is a good approximation to the true vacuum for strong fields constant in

space and varying only in time.
2. If we divide the magnetic field strengthB(x) into “fast” and “slow” components, the part

of the vacuum wavefunctional that depends onBslow takes on the dimensional-reduction form. The
fundamental string tension is then easily computed as

σf = 3mg2/16. (2.5)
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3. If one takes the massm in the wavefunctional as a free variational parameter and computes
(approximately) the expectation value of the Yang–Mills hamiltonian, one finds that a non-zero
(finite) value ofm is energetically preferred.

4. Results for the mass gap, and the Coulomb-gauge ghost propagator and the color-Coulomb
potential computed fromΨGO[A] are in good agreement with those derived from standard Monte
Carlo simulations (see below).

Despite this evidence, our proposal represents only an educated guess, motivated by the form
of the QED vacuum state, dimensional reduction, and gauge invariance.

A more sophisticated approach has been followed in(2+1) dimensions by Karabali, Nair and
collaborators [9]. In the temporal gauge (A0 = 0) they combine the remaining two components of
the gauge potential into complex fields:

A ≡ 1
2 (A1+ iA2) , Ā ≡ 1

2 (A1− iA2) , (2.6)

and then introduce new variables, a matrix-valued fieldM ∈ SL(N,C ), which is related toA, Ā via

A =−(∂zM)M−1, Ā = M†−1
(∂z̄M†), (2.7)

wherez= x1− ix2 andz̄= x1+ ix2 are the usual holomorphic variables in the complex plane.
Under a gauge transformationΩ, M transforms covariantly,M → ΩM, and can be used to

define gauge-invariant field variables:

H ≡ M†M, Ja ∼ Tr
(

Ta(∂H)H−1) , (2.8)

through which one can express the hamiltonian, inner products of physical states, and the vacuum
wavefunctional.

Karabali et al. argue that the part bilinear in field variablesJa, when expressed in usual vari-
ables, has the form:

ΨKKN [A]≈ exp

[

−1
2

∫

d2xd2y Ba(x)

(

1√
−∇2+m2+m

)ab

xy
Bb(y)

]

, (2.9)

which, however, is not gauge-invariant. One can imagine that higher-order terms inJa might
convert the ordinary laplacian in Eq. (2.9) into the covariant laplacian, leading to:

ΨKKN ′ [A]≈ exp

[

−1
2

∫

d2xd2y Ba(x)

(

1√
−D2+m2+m

)ab

xy
Bb(y)

]

. (2.10)

This form is still hardly sustainable, because of the divergence of the lowest eigenvalueλ0 of the
adjoint covariant laplacian (discussed above).

Instead of the form (2.10) we will subject to lattice tests a “KKN-inspired” or“hybrid” wave-
functional which has (2.9) and (2.10) as starting point and agrees with them for abelian gauge
configurations, but in which, similarly to the GO proposal, the covariant laplacian (−D2) is re-
placed by the subtracted one(−D2−λ0):

Ψhybrid[A]=N exp



−1
2

∫

d2xd2y Ba(x)

(

1
√

(−D2−λ0)+m2+m

)ab

xy

Bb(y)



 . (2.11)
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3. Tests of the proposals

Our aim is to test how good/bad is the approximation of the true Yang–Mills vacuum wave-
functional by the proposed approximate forms, Eq. (2.4) and (2.11). Toachieve this goal, we take a
set of operators{Q̂[A]} that depend on gauge fieldsA, and compute (and compare) their expectation
values:

• 〈Ψtrue
0 |Q̂[A]|Ψtrue

0 〉= 〈Q[A] 〉MC in Monte Carlo lattices, i.e. an ensemble of two-dimensional
slices of configurations generated by MC simulations of the three-dimensional euclidean SU(2)
lattice gauge theory with standard Wilson action at a couplingβE; from each configuration, only
one (random) slice at fixed euclidean time is taken;

• 〈Ψ0|Q̂[A]|Ψ0〉= 〈Q[A] 〉recursionin “recursion” lattices, i.e. an ensemble of independent two-
dimensional lattice configurations generated with the probability distribution given by a proposed
vacuum wavefunctional, with parametersm andg2 fixed to some reasonable values, to be able to
compare to the MC ensemble.

Numerical simulation of |Ψ0|2 The generation of recursion lattices whose probability distribu-
tion P[A] is given by the square of a wavefunctional of the type (2.1) is based on the following
idea [6]: Define a probability distribution for gauge fieldsA with the kernelK controlled by an
independent “background” configurationA′

P[A;K[A′]] = N exp

[

−
∫

d2xd2y Ba(x;A)Kab
xy [A

′]Bb(y;A)

]

, (3.1)

where the field strengthB is computed fromA, and bothA andA′ are fixed to an appropriate gauge.
If the variance of the kernelK[A] in the probability distributionP[A] is small after the choice of
gauge, then one can write down a chain of approximate relations:

P[A] = P[A;K[A]]≈ P[A;〈K〉] = P

[

A;
∫

dA′
P[A;K[A′]]P[A′]

]

≈
∫

dA′
P[A;K[A′]]P[A′].

(3.2)
The probability distributionP[A] can then obtained by solving (3.2) iteratively:

P(1)[A] = P[A;K[0]], . . . , P(k+1)[A] =
∫

dA′
P[A;K[A′]]P(k)[A′]. (3.3)

Practical implementation of the recursion procedure consists of the followingsteps: Choose
A1 = 0 (axial gauge) andA2 6= 0, then

(i) givenA2, setA′
2 = A2,

(ii) P [A;K[A′]] is gaussian inB, diagonalizeK[A′] and generate a newB-field stochastically,

(iii) from B calculateA2 in axial gauge and compute everything of interest,

(iv) go back to step (i), repeat as many times as necessary.

The procedure converges rapidly, one needsO(10) cycles above, and the assumption about a
small variance ofK among configurations is supported a posteriori by the absence of large fluctua-
tions of the spectrum ofK evaluated on individual recursion lattices.
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Choice of vacuum wavefunctional parameters m and g Our next task is to select appropriate
values for parametersg (or β = 4/g2) andm of recursion lattices to be able to compare to MC
lattices with Wilson-action couplingβE. In our earlier studies [6, 8] withΨGO we choseβ = βE,
and fixedm using Eq. (2.5) by the measured value of the fundamental string tension (in lattice
units): m(βE,L) = 4βEσf(βE,L)/3.

Another possibility is to use for fixingβ andm some information about the true Yang–Mills
vacuum wavefunctional atβE for a set of simple gauge-field configurations. The square of the
vacuum wavefunctional for some trial configurations (non-abelian constant fields, abelian or non-
abelian plane waves) can be computed numerically in simulations of the three-dimensional Yang–
Mills theory. Take a set of time-independent configurationsU = {U ( j)(x), j = 1, . . . ,M}. The
method (proposed long ago [10] and described in more detail in [4]) is based on the following
identity:

|Ψ[U ( j)]|2 = 1
Z

∫

[DU ]δ (U0)∏
x

δ
[

U(x,0)−U ( j)(x)
]

e−S. (3.4)

In practice, one measures the probability in a modified lattice Monte Carlo simulation: The links
at t = 0 are constrained to belong to a configuration from the setU . In a MC update all links,
except those witht = 0, are updated by the usual heat bath method. On thet = 0 slice, one of theM
configurations from the setU is selected at random, and then accepted/rejected by the Metropolis
algorithm. LenNj denote the total number of times that thej-th configuration from the set is
accepted, andNtot the total number of updates of thet = 0 plane. Then:

|Ψ[U ( j)]|2 ∝ lim
Ntot large

Nj

Ntot
. (3.5)

For determining vacuum wavefunctional parameters we measured probabilities of abelian
plane waves with fixed (maximal) wavelengthλ = L and varying amplitudes:

U ( j)
1 (n1,n2) =

√

1−a j(n2)212+ ia j(n2)σ3, U ( j)
2 (n1,n2) = 12, (3.6)

with a j(n2) =

√

α + γ j
L2 cos

2πn2

L
, p2 = 2

(

1−cos
2π
L

)

. (3.7)

The probabilities measured in the Monte Carlo simulation described above can be parametrized by

|ΨMC[U
( j)]|2 = exp(−RMC[U

( j)]−R0), RMC[U
( j)] = 2(α + γ j) ωMC(p)+ const. (3.8)

Similarly, for a theoretical Ansatz of vacuum wavefunctional:

RAnsatz[U
( j)] = 2(α + γ j) ωAnsatz(p)+ const. (3.9)

For the proposals discussed in Section 2:2

ωGO(p) =
1
g2

p2
√

p2+m2
, ωKKN (p) =

1
g2

p2
√

p2+m2+m
. (3.10)

Fig. 1 shows results forωMC vs. p2 in physical units for a number ofβE values and lattice
sizesL. The scale was set by the conventional value of(0.44 GeV)2 for the physical string tension,

2For abelian configurations, the KKN (2.9) and hybrid (2.11) wavefunctionals coincide.
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Figure 1: Cumulative data forωMC vs. p2 in physical units, on lattices of extensionsL = 16,24,32,40,48,
and euclidean lattice couplingsβE = 6,9,12. The curves (hardly distinguishable from one another) represent
ωGO(p) andωKKN (p) for fitted parametersmphys andg2

phys given in Table 1.

i.e. the lattice spacing isa(βE,L) =
√

σf(βE,L)/(0.44 GeV). The data were fitted by functional
forms in Eq. (3.10), the resulting parameters are summarized in Table 1.

Parameters of the proposed wavefunctionals in lattice units werevariant mphys g2
phys

GO 0.771 1.465
KKN 0.420 1.237

Table 1: Vacuum wavefunc-
tional parameters (phys. units).

fixed using:

g2(βE,L) = g2
physa(βE,L), m(βE,L) = mphysa(βE,L). (3.11)

We will present below results forβE= 9, the actual parameter values
used at this coupling are listed in Table 2.3

Results We focus on two important quantities defined in Coulomb gauge, the Coulomb-gauge
ghost propagator:

G(R) =
〈

(

M [A]−1)aa

xy

〉∣

∣

∣

|x−y|=R
=

〈

(

− 1
∇ ·D [A]

)aa

xy

〉∣

∣

∣

∣

∣

|x−y|=R

(3.12)

and the color-Coulomb potential:

V(R) ∝ −
〈

(

M [A]−1(−∇2)M [A]−1)aa

xy

〉∣

∣

∣

|x−y|=R
= −

〈

(

1
∇ ·D [A]

(−∇2)
1

∇ ·D [A]

)aa

xy

〉∣

∣

∣

∣

∣

|x−y|=R

.

(3.13)
It was argued by Gribov [13] and Zwanziger [14], that the low-lying spectrum of the Faddeev–
Popov operator,M [A] = −∇ ·D [A], in Coulomb gauge probes properties of nonabelian gauge

GO hybrid
βE L

√

σf(βE,L) a(βE,L) β m β m

9 32 0.162 0.367 7.43 0.283 8.80 0.154

Table 2: Values ofβ andm for the GO and hybrid wavefunctionals atβE = 9, derived from the parameters
in Table 1. (The value of

√

σf(βE,L) comes from Monte Carlo simulations of the standard Wilson action in
three Euclidean dimensions [12].)

3The results obtained for the GO vacuum wavefunctional with two variants offixing its parameters, described in the
text, almost do not differ [11].
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Figure 2: The Coulomb-gauge ghost propagator.
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Figure 3: |V(0)| in the individual configurations.

fields that are crucial for the confinement mechanism. The ghost propagator in Coulomb gauge and
the color-Coulomb potential are directly related to the inverse of the Faddeev–Popov operator, and
play a role in various confinement scenarios. In particular, the color-Coulomb potential represents
an upper bound on the physical potential between a static quark and antiquark [15].

An important point to mention is the equality of the vacuum wavefunctionals in temporal
and Coulomb gauge (see e.g. [16]), when evaluated on gauge fields satisfying the Coulomb gauge
condition∇ ·A= 0, and which lie in the first Gribov region. Our numerical method described above
generates configurations in the temporal gauge, these are then transformed to Coulomb gauge, and
Coulomb-gauge observables are evaluated in the transformed configurations.

Figure 2 displays the equal-time ghost propagator in Coulomb gauge computedin a standard
Monte Carlo simulation on a 323 lattice atβE = 9, together with results obtained from recursion
lattices with probability distributions given byΨ2

GO andΨ2
hybrid, generated usingβ andm values

listed in Table 2. The agreement is quite perfect, for all three ensembles.
Figure 3 is crucial for understanding results for the color-Coulomb potential, which are shown

in Fig. 4. One can evaluate the potential in each individual lattice configuration. Figure 3 dis-
plays values of|V(0)| in MC lattices, GO and hybrid recursion lattices. It is clearly seen that most
configurations have|V(0)| in the range between about 2 and 10 (about 80%), but there are rare
instances of configurations with much higher values. These “exceptional”lattices possess a still
positive, but very small value of the lowest eigenvalue of the Faddeev–Popov operator, and are
therefore rather difficult do gauge-fix to Coulomb gauge. If we discardfrom our ensembles con-
figurations with|V(0)| greater than some cutκ, we obtain results illustrated in Fig. 4. Forκ = 5
or even 10 the agreement of potentials for MC, GO, and hybrid lattices is reasonable. However,
as the cut is increased, the agreement deteriorates. The GO and hybrid potentials are still roughly
linear (and hardly distinguishable from each other), but deviate quantitatively from the MC result.
This indicates a discrepancy in the tails of the probability distributions. While the ghost propagator
(3.12), containing only a single factor of the inverse Faddeev–Popov operator, is rather insensitive
to the tails and its values are mainly determined by the bulk of configurations, the color-Coulomb
potential (3.13) involves two factors and is more sensitive to the tails.

But what makes the probability distributions corresponding toΨ2
GO andΨ2

hybrid so close? We
believe that the reason is that both wavefunctionals have – for optimal choices of their parameters

8
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Figure 4: The color-Coulomb potential for illustrative values of thecut κ .

– about the same dimensional-reduction limit, and the results are mainly sensitive tothat limit, not
to the detailed functional form of the kernelK that enters the wavefunctional.

4. Summary

1. We described a recursion procedure that allows to generate lattice configurations with prob-
ability distributions given by approximate Yang–Mills vacuum wavefunctionalsof certain simple
forms like (2.4) and (2.11).

2. Relative magnitudes of the true vacuum wavefunctional on particular sets of configurations
(abelian plane waves, non-abelian constant configurations) can be computed numerically.

3. Parameters of approximate vacuum wavefunctionals can be fixed e.g. by fitting the results
for long-wavelength abelian plane waves.

4. The two tested proposals (GO, KKN-inspired hybrid) provide Coulomb-gauge quantities
almost indistinguishable, and in reasonable agreement with lattice Monte Carlo results (with some
discrepancy in color-Coulomb potentials).

5. GO and hybrid vacuum wavefunctionals seem to agree with the true Yang–Mills vacuum
wavefunctional for the bulk of the probability distribution.

6. The important common property of both tested approximate vacuum wavefunctionals ap-
pears to be their almost identical dimensional-reduction form.

Only a subset of our recent results was covered in the present contribution. The interested
reader should consult Refs. [4, 6, 8, 11] for additional details and more data.
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