WIDEFIELD SCIENCE AND TECHNOLOGY FOR THE SKA
SKADS ConrereNce 2009

S.A. Torchinsky, A. van Ardenne, T. van den Brink-Havinga, A.J.J. van Es, A.J. Faulkner (eds.)

4-6 November 2009, Chdteau de Limelette, Belgium

A Real-time Software Broadband Beamformer on the IBM Cyclops
Multiprocessor System *
A. AhmedSaid

Jodrell Bank Centre for Astrophysics, The University of Manchester, Jodrell Bank Observatory,

Macclesfield, Cheshire, SK11 9DL, UK

Abstract. Digitally beamforming broadband signals of several hundred MHz of bandwidth in real time, is computationally
highly expensive and very demanding. Performing this task in software is even more challenging. However, with the emer-
gence of massively parallel multiprocessor chips, it is becoming realistically feasible. The aim of this work is to investigate
the implementation effort and the performance achievable by a digital broadband beamformer implemented in software using
a state-of-the-art multiprocessor chip. Using the IBM Cyclops processor, a complete software beamformer has been designed,
implemented and tested. The software has been particularly optimized for the application and the Cyclops system architecture. It
includes a kernel and libraries designed exclusively to maximise performance for this application. The obtained results show that
several hundred MHz of bandwidth can be beamformed in real time.

1. Introduction

Beamforming is a technique used to separate signals arriving
from different direction at an array of receivers by means
of spatial filtering (Veen & Buckley 1988; Krim & Viberg
1996). This technique is used in many applications such
as in Telecommunications, Sonar, Radar, Medical imaging,
Geophysics, Radio Astronomy...etc (Veen & Buckley 1988). It
can be wide-band, if the signals envelope changes noticeably
as the wave front passes through the array or narrow-band if
the changes are negligible.

It is common to implement wide-band beamformers using
narrow-band beamforming techniques. This is made possible
by splitting the wide-band signals, using filter banks, into nar-
row band signals which can be processed using a narrow-band
beamformer (Veen & Buckley 1988).

Narrowband beamforming is simply the operation of
summing the weighted outputs of the receivers in order to
achieve spatial filtering. By properly choosing the weighting
coefficients, it is possible to obtain the signals coming from
a particular direction while attenuating, ideally completely
removing, the signals coming from other directions.

The objective of this work is to investigate, implement
and test a broadband, real-rime, software beamformer. The
target bandwidth is in the order of several hundred MHz, up
to 8 simultaneous beams are desired and 2 polarisations are
required. The state-of-the-art IBM multi-processor Cyclops
system has been chosen to perform this study.

* This work was supported by the Science & Technology Facilities
Council, and by the European Commission Framework Program 6,
Project SKADS, Square Kilometre Array Design Studies (SKADS),
contract no 011938.

. Poly-

Shnema > Phase > Beantorming
filter bank Y

Signal from el Narrowband

Antenna PiESS Beamformil
filter bank saniciming

. Poly-

ngtaelr::;m IFEED reor(;iiation l;\‘eaé;rfrT?fvf::)f:inndg
filter bank

——» One antenna all frequency bands
—— All antennas one frequency band
——» All beams one frequency band

Fig. 1: Typical broadband beamformer

The rest of this paper is organized as follows:
In section 2, a brief description of the beamforming scheme is
given and in section 3, the architecture of the Cyclops system is
presented. Section 4 gives details of the software development
undertaken to achieve the objectives of this work and section 5
presents the simulation results. Finally, conclusions and future
work are given in the last section.

2. Digital Broadband Beamforming

A typical broadband beamformer is represented in Figure 1. It
consists of three main operations:

e Channelisation using Poly-phase filters;
e Data redistribution/reorganisation;
e Narrowband Beamforming.

Data redistribution/reorganisation involves gathering data,
from all antennas, of each frequency band in order to be
processed by a narrowband beamformer. This process requires
a communication bandwidth proportional to the product of
the number of antennas by the sampling frequency. Therefore
it constitutes a bottleneck that reduces the maximum signal

290

Signal from
Antenna

Poly-Phase

et e > Narrowband
Beamforming
— Poly-Phase 2 antennas

filter bank

Signal from
Antenna

Signal from
Antenna

\ N
Poly-Phase
— > Narrowband /
Beamforming
Signal from Poly-Phase 2 antennas

Antenna filter bank

Signal from

Poly-Phase
Antenna b b

Narrowband
Beamforming

Signal from 2antennas

Antenna

Poly—Phase
filter bank

Signal from
Antenna

—— ey > Narrowband
\ Beamforming
Signal from Poly-Phase 2 antennas

Antenna

One antenna, all frequency bands
Partially formed beams, all frequency bands
Fully formed beams, all frequency bands

Fig. 2: Scalable and efficient beamformer

P: Processor, IC: Instruction Cache (32 KB SRAM)

Thread Ut
32 KBSRAM

_-- 64 Registers 64 Registers

- =

Floating-Point/MAC

"\ Shared Port to Crossbar

4 DDR2 Controllers

BER

External Memory

High Speed /O Ports TolFrom (Four Banks)

Nearest-Neighbor Nodes Disk, Ethernet, Control Tree

Fig. 3: The Cyclops Processor

bandwidth that can be processed and the architecture’s scala-
bility. For this reason an alternative beamforming scheme has
been developed. This beamforming scheme uses a different
partitioning which consists of reducing the problem size
antenna wise rather than frequency wise. In this scheme all
frequency bands are processed together, however, only a small
number of antennas (a minimum of two) are beamformed at
once. Figure 2 illustrates this strategy.

After an initial beamforming stage, the resulting data
streams are all added together to form the final beam(s). This
beamforming method is just a reorganisation of the beamform-
ing operations, it uses the beamforming coefficients calculated
for the whole array and is, therefore, not sub-optimal. It is a
mathematically equivalent beamforming method.

3. The Cyclops system Architecture
3.1. The Cyclops Processor

Cyclops is a highly parallel IBM chip with 80 processors
clocked at 500 MHz and high speed communication links (IBM

A. AhmedSaid: A Real-time Software Broadband Beamformer on the IBM Cyclops Multiprocessor System

. Outer Node . Inner Node O Centre Node

Fig. 4: Logical mapping of a 16 antennas beamformer on a Cyclops
system

® @ @
-
J :\
Unused link Unused node . Inner Nede
P Used link . Outer Node O Centre Node

Fig. 5: Physical mapping of a 16 antennas beamformer on a Cyclops
system

2007a,b). Each processor consists of 2 thread units and one
floating-point arithmetic unit. The thread units have 32K of
RAM, 64 registers (64 bits wide) and an ALU. A Cyclops
system is made of nodes arranged in a 3D grid configuration
and containing one Cyclops chip each. The nodes communi-
cate with each other using a device called the ASwitch. The
ASwitch has 6 bidirectional high speed ports to allow com-
munication in the three orthogonal directions (x,y, and z axis).
The beamformer implementation presented in this document
has been designed and optimised for this system.

3.2. Beamformer mapping on a Cyclops system

The architecture illustrated in Figure 2 is mapped logically into
a Cyclops system as shown in Figure 4. In this mapping, there
are three types of nodes: The Outer nodes perform the beam-
forming of two antenna signals, the Inner nodes perform the
addition of two signals and the Centre node performs the ad-
dition of two signals and outputs the result to ’a host computer’.

A Cyclops system consists of 8 X 3 X 2 shelves of Cyclops
blades (nodes). The best physical mapping fit is presented in
Figure 5.

A. AhmedSaid: A Real-time Software Broadband Beamformer on the IBM Cyclops Multiprocessor System

Beamforming
Coefficients

Cyclops Program

!

Cyclops GNU C
Compiler

l

Cyclops Executable

l

Cyclops Functionally AccurateJ

Cyclops Kernel ——» «——— Cyclops Library

Simulator

Fig. 6: Cyclops Work Flow

4. Beamformer Software Design and
implementation

The Cyclops software development environment used is based
on the C GNU tools (Free Software Foundation 2009). In addi-
tion, a Kernel and libraries are provided to support the design
of high level C applications. The evaluation of the provided li-
braries revealed that the communication functions are not suit-
able for our application because of large overheads which make
them too slow. Therefore, it was necessary to develop commu-
nication functions that are simpler and more efficient. However,
some restrictions with the Kernel provided do not allow full
control of the Cyclops chip making it necessary to develop a
new kernel as well. As a result, the kernel and libraries provided
were not used and new ones have been developed. The design
methodology adopted for the software, favours speed and effi-
ciency over flexibility, simplicity and compile time parameter-
isation over complexity and runtime variability. The reason for
these choices is that the target application is real-time signal
processing and not general purpose computing.

4.1. High performance kernel

The design of the kernel was guided by the need for efficiency,
speed, flexibility and compatibility with the available C com-
piler. The kernel has been written in assembly, it is very mini-
malistic and it performs the following tasks:

e Setup interrupt handlers;
o Initialise the thread units;
e Start the main program.

All the thread units execute the same initialisation code and
run the same main C program. Thread units can be instructed
to perform different tasks by using thread IDs, node IDs and
conditional statements (ex if(ID==1) do this;).

4.2. High performance library

The library contains very low latency functions that can be
grouped into the following categories:

291

mmp [npucsuter |
2 Input Bufer
Processing Output Buffer 0::’"'"

Input Buffer

Outer Node

e _
e
= _
I ff
o Input Buffer

. Output
prosssng [o st

Inner Node

Cyclops

Processing Output Buffer %':5:‘“';’

L mput
e o

L nput

Centre Node

Fig. 7: Data path for each node type

e Printing and File I/O functions that can be used within the
simulator environment only;

e System control functions;

e Communication functions.

The main performance limiting factor in our application is
the communication bandwidth. In order to maximise it, a num-
ber of restrictions have been adopted:

e Communications occur between neighbouring nodes only;
e Packet sizes are fixed and predefined at compile time;

e Headers are fixed and predefined at compile time;

o Input and Output buffers are predefined at compile time;

In order to modify the system parameters to suit an applica=
tion’s need, a number of constants (such as the packet size, the
buffers size, the headers) are defined in a C header file. These
compile time constants offer a good compromise between flex-
ibility and efficiency.

4.3. Beamformer design

The data path is quite similar for all node types and is
illustrated in Figure 7. Data is received into 2 input buffers,
it then passes through a processing stage and the result is
stored in an output buffer. The difference between the three
node types is the source and destination of the data. The
Outer nodes receive the beamformer input data which is
read from the Off-chip memory and the result transmitted
via an ASwitch port. For the Inner nodes, data is received
and transmitted via an ASwitch port, and for a Centre
node, data is received via an ASwitch port but is stored in the
Off-chip memory from where it can be read by a host computer.

The other difference between the node types is the pro-
cessing. The Outer nodes perform the beamforming of two
input signals whereas the Inner and Centre nodes perform the
addition if two data streams (partial beams). Figure 8 shows
the chronological progression of data through the pipeline

292

Time

Time

l Buffer 1 | Buffer 2 l oo a l

Frame 2 | oo o | Frame Nf }

| Frame 1 |

Beam P }

[FID| Beam 1 | Beam 2 |

l Frequency 1 l Frequency Zl l Frequency N/P ‘
/ N

/

:
,

Fig. 9: Data streams structure

l Outer Node 1 | Outer Node 2 I 0o ‘

| Frequency 1 | Frequency 2 | C |

lAmenna 1 Real I Antenna 1 ImaglnavyIAmenna 2 Real I Antenna 2 Imaginary }

Fig. 10: Beamforming coefficients structure

stages inside a node.

The output data stream structure is presented in Figure
9. The output data is generated in a buffered fashion with
each buffer containing a number of frames. This is due to the
fact that communications between nodes is performed in a
buffered and packetised way (a packet encapsulates one frame
of data). Each frame is divided into P sub-frames to hold data
for P beams (P = 1..8). Each sub-frame, holds N/P complex
samples (where N is the total number of samples per frame).
The frames are preceded by an 8 bits Frame ID (FID). The
FID is simply a counter incremented from O to 255. It is used
to make sure that the frames are processed in the right order.

The beamforming coefficients are used by the Outer
nodes only. They are stored as an (N/P) X P x 2 matrix of
floating-point double precision complex data. Their structure
is presented in Figure 10.

The coeflicients are stored in three buffers as illustrated in
Figure 11. Two of them are reserved in the SRAM (Onchip
RAM) and are used as a double buffer to facilitate run-time
updating without stopping the beamforming program. When
one of them is being updated the other is used for beamforming
then the second buffer is updated while the first one is used
for beamforming. These buffers are updated by copying the
content of the third buffer which is reserved in the DRAM
(Offchip RAM). The updating is performed when a flag (a
variable in the shared memory space) is set to 1. After the

A. AhmedSaid: A Real-time Software Broadband Beamformer on the IBM Cyclops Multiprocessor System

DRAM SRAM

e—— Internal Buffer 1 ——s

L Beamformer

e—— |Internal Buffer2 ——e

Beamforming

Coefficients Buffer >2

Fig. 11: The beamforming coefficients bufters

update, the flag is reset to zero.

The DRAM coeflicients buffer is updated by receiving new
coefficients from the host system. Its content can be changed at
any time without interference with the beamforming operation.
When new coeflicients are uploaded a flag is set to 1 to signal
that new coeflicients are available.

4.4. Implementation results

The beamformer has been implemented and tested on the
Cyclops functionally accurate simulator (Cuvillo et al. 2005)
(version 4.0). It features the following characteristics:

2 Polarisations;

1,2,4 or 8 beams;

1 x 8 bits input data and 2 X 8 bits output data;

Mixed arithmetic precision: Coefficients are applied in dou-

ble floating-point precision and partial-beams are accumu-

lated in 8 bits integer format;

e On-the-fly updatable beamforming coefficients;

e Independent from array geometry and antenna choice;

e Can be used with any advanced beamforming coefficients
computation algorithm;

e Can trade-off between the bandwidth and the number of

beams.

The beamformer has been designed to provide the highest
bandwidth possible for any given number of beams. Therefore,
it obeys the following formula:

2 X NumBeams X NumPolarisations X Bandwidth = K

Where K is the total data rate achievable by our code on the
Cyclops architecture.

This formula means that bandwidth can be traded for beams
and vice-versa.

Simulator tests give an estimate of K =
Therefore the formula can be simplified to:

1.28 GB/s.

NumBeamsX Bandwidth = 320

For example for 8 beams, 2 polarisations, max 40MHz per
beam. For 1 beam it is 320MHz.

A. AhmedSaid: A Real-time Software Broadband Beamformer on the IBM Cyclops Multiprocessor System

MATLAB

}

Generate Input files
(Signals + Coefficients)

Beamform Signals ——»

Program

Compare and Display
Results

Cyclops
Executable

!

Cyclops Simulator

Output file
(Beamformed Signals)

Polarisation 1

293

Amplitude
o

—— MATLAB
Error

T —
—— C64Sim

Frames borders
— — — Beams borders
r T

L
100 200 300 400

500

600

700

Samples (2 frames, 8 beams per frame, 32 frequency bands per beam)

Polari

isation 2

|
|
|
L

800 900 1000

Amplitude
4]

—— C64Sim
—— MATLAB
Error

M
‘\

Frames borders
— — — Beams borders

oL

Fig. 12: The simulation setup

5. Numerical Test, Simulation and Evaluation

An advanced test and simulation program has been written
in MATLAB. This program tests the Cyclops beamformer by
generating input data and beamforming coefficients which are
passed to the Cyclops simulator to use them as an input to the
beamformer. The same data is also beamformed in MATLAB
and the results are compared. The operation of the test program
is illustrated in Figure 12.

Data generation is performed by modelling the signals
received by an antenna array. The model uses Gaussian noise
as the waveform for the incoming signals whose number is
set in the MATLAB program and directions of arrival chosen
randomly. The program also models the coupling between
antennas and it takes into consideration the fact that the array
can be in the middle of a bigger array with the outside antennas
contributing to the mutual coupling but their received signals
are unavailable.

The results of this algorithmic and numerical testing are
presented in Figure 13. In this figure, 2 frames of samples are
visualised. In red is the beamformer output from the Cyclops
program and in blue is the MATLAB output. The green plot is
the difference between the two. It can be seen that the Cyclops
beamformer performs well and produces the expected output.
The small differences between the two beamformers are due the
integer arithmetic operations used in the Cyclops beamformer.

6. Conclusions and future work

The feasibility of a real-time software broadband beamformer
has been demonstrated. However, a significant software
development was required to achieve a good performance.
The test results revealed that the I/O bandwidth is the main
performance limiting factor.

Scalability is also an issue with the predefined node
interconnect configurations. For example, no matter how big a
3D grid can be, it is impossible to grow the tree architecture

t
I
I
I
L T I S RO R TR 1
100 200 300 400 500 600 700 800 900 1000
Samples (2 frames, 8 beams per frame, 32 frequency bands per beam)

Fig. 13: The Cyclops Processor

(Figure 4) indefinitely (estimate: max 64 input nodes).

The future work will be to confirm the findings by testing
a 2 x 8 inputs beamformer on a real 3 X 3 X 3 nodes Cyclops
system.

References

Cuvillo, J. D., Zhu, W., Hu, Z., & Gao, G. R. 2005, in 2nd
Annual International Symposium on Computer Architecture

Free Software Foundation. 2009, GCC, the GNU Compiler
Collection, http://gcc.gnu.org/

IBM. 2007a, 64-Bit Cyclops Principles of Operation Part I,

IBM. 2007b, 64-Bit Cyclops Principles of Operation Part II,

Krim, H. & Viberg, M. 1996, Two decades of array signal pro-
cessing research, IEEE Signal Processing Magazine

Veen, B. D. V. & Buckley, K. M. 1988, Beamforming:
A Versatile Approach to Spatial Filtering, IEEE ASSP
Magazine

