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1. Introduction

The study in [1] for the theory with Ny = 12 flavours supports a scenario as depicted in Fig. 1,
where the end-point of the chiral phase boundary signals the opening of the conformal window and
Ny = 12 is inside the conformal window. While conformality for the same theory has been reported
by other groups [2, 3], contrasting views were presented as well [4].

Any massless theory within the conformal window has exact chiral symmetry and develops an
infrared fixed point (IRFP) at which the theory is conformal. Everywhere in the parameter space of
the theory, except at the fixed point, observables will show only remnants of conformality. These
remnants joint with the realization of exact chiral symmetry lead to features of the spectrum distinct
from QCD. In particular, adimensional mass ratios are robust indicators of patterns of symmetries
[1, 6].

The aim of our study, of which this proceeding is a preliminary account, is to isolate those
features and use them in the comparison of Ny = 12 lattice results with typical lattice QCD results.
The set of data used here consists of the ensembles partly analysed in [1], where more statistics
has been collected for some points at the lattice bare couplings f; = 6/g*> = 3.8,3.9 and 4.0, on
the weak-coupling side of the bulk phase transition [1]. Data are at masses am = 0.07,0.06 with
volume 16°x24, am = 0.05 with volume 24* and am = 0.025 with volume 32*. The action used is
the tree-level Symanzik-improved gauge action with Asqtad staggered fermions. We also include
the largest volume data reported in [4] at one value of the bare lattice coupling f;, = 2.2 and with a
different improved lattice action; tree-level Symanzik improvement and two steps of stout-smearing
in the staggered fermion matrix. Whenever instructive, we compare with results for the theory with
Ny = 16 fundamental flavours from [5]. A study of Ny = 16 with the same action as Ny = 12 in [1]
is in progress [7]. We defer to future work a more refined estimate of finite volume effects and a
finite size scaling analysis.

In section 2 we analyse the mass ratio my /m,, the Edinburgh plot and additional ratios useful
to discriminate between a QCD phase and a conformal phase. In section 3 we consider another
indicator of chiral symmetry restoration, the splitting between the vector and the axial ground
states. Finally, in section 4 we analyse another key relation between the would be Goldstone boson
and the chiral order parameter. We conclude in section 5.
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Figure 1: The phase diagram of QCD-like theories in the T', N plane.
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Figure 3: Edinburgh plot: Ny = 12 data from [4]
(red squares), Ny = 12 data from this work and B; =
3.8,3.9 (blue circles), Ny = 16 data from [5] (magenta
diamonds). The QCD physical point (black star, left-
most) and the heavy quark limit (free theory) point
(black star, rightmost) are shown.

Figure 2: Ratio my /my as a function of the bare quark
mass for all existing data for Ny = 12, and Ny = 16:
Ny = 12 data from [4] (red squares), Ny = 12 data
from this work and f; = 3.8,3.9,4.0 (blue circles),
Ny = 16 data from [5] (magenta diamonds).

2. The Edinburgh plot and mass ratios.

One first significant spectrum observable is the ratio mz /m,, between the mass of the lightest
pseudoscalar state (pion) m; and the mass of the lightest vector state (rho) m,. In QCD at zero
temperature, chiral symmetry is spontaneously broken and the pion is the (pseudo)Goldstone boson
of the broken symmetry, implying that its mass will behave as my ~ /m. Instead, the vector mass
contains a constant term and a leading correction linear in the quark mass, thus my ~ mo+bm. In
the chirally broken phase, modulo lattice artefacts, one should thus expect their ratio to behave as
my/mp ~ «/am - as a function of the bare lattice quark mass am.

Within the conformal window chiral symmetry is restored. The lightest pseudoscalar state is
not anymore a Goldstone boson, and there is no mass gap. At the IRFP and at infinite volume, the
quark mass dependence of all hadron masses in the spectrum is governed by conformal symmetry:
at leading order in the quark mass expansion all masses follow a power-law with common exponent
determined by the anomalous dimension of the fermion mass operator at the IRFP. Hence we expect
a constant ratio. Away from the IRFP, for sufficiently light quarks and finite lattice volumes, the
universal power-law dependence receives corrections, due to the fact that the theory is interacting
but no longer conformal. Hence, the pseudoscalar-vector mass ratio is constant at the IRFP at
infinite volume, and approximately constant in its surroundings and at finite volume, as it is the
situation explored here.

In practice, the task remains the one of discriminating between a lattice mass ratio that goes to
zero as y/am and a ratio that remains constant and O(1) over a significant range of masses.

An important caveat concerns the extraction of mass eigenstates from correlators within the
conformal window: correlators in the vicinity of the IRFP will follow a power law decay at leading
order, corrected by mass contributions. However, for sufficiently large quark masses and away from
the IRFP one expects lattice correlators to decay exponentially as in QCD, possibly with subleading
conformal corrections. Given this caveat, we have analysed all correlators in this work assuming
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Figure 4: Ratio (am;)?/(am) as a function of Figure 5: Ratio (amy)>/(am) as a function of
(mx/mp)* for QCD data (quenched staggered) re- (my/mp)? for the Ny = 12 data at B, = 3.8 (green di-
ported by the MILC collaboration [8]. Notice that amonds), 3.9 (red squares) and 4.0 (black circles).
quenching should not affect the leading behaviour.

the standard multi-exponential time dependence. The pseudoscalar staggered correlator could be
fitted with two cosine hyperbolic functions (fundamental and excited state) without the parity-odd
(oscillating) component. All other staggered correlators could be fitted with a cosine hyperbolic
with an oscillating component at intermediate and late times, with the addition of an excited state
at early times. The largest uncertainties of the present analysis are related to the nucleon, for which
more statistics and better smearing is needed. Temporal extents longer than r = 24, 32 would also
facilitate the analysis of correlators at the lightest masses.

Fig. 2 shows that the mass ratio for all existing Ny = 12 data is approximately constant over
a wide range of bare quark masses, as it should be expected for a chirally symmetric theory. Ob-
viously, on the basis of these numerical evidences, we cannot exclude that a change of trend will
occur at even lower masses. Searching for combined evidences seems to be the optimal strategy
for this case, following the line adopted in [1].

The Edinburgh plot, widely used in lattice QCD studies, is constructed in terms of adimen-
sional ratios of masses and offers a powerful way to combine results of lattice calculations per-
formed at different lattice spacings. Fig. 3 shows the Edinburgh plot for all existing data with
Ny = 12. For an instructive comparison, we also show lattice results for the Ny = 16 theory from
[5]; the latter is already known to be in the conformal window by perturbative arguments. The
physical point of QCD (leftmost side of figure) corresponds to iz /mp ~ 0.18 and my/m, ~ 1.21.
On the other side of the figure, a useful theoretical limit is the heavy quark mass limit (rightmost
side of figure), where all masses in the spectrum are given by the sum of their valence quark masses,
so that my /my, = 1 and my/m, =3 /2. This limit is also equivalent to the free theory limit. A QCD
scenario will draw a curve in this figure that extrapolates to the physical point for decreasing quark
masses. What we observe in Fig. 3 suggests instead a behaviour that is to be expected for theories
in the conformal window. The two mass ratios are “stuck” at a tiny corner, despite the fact that
quark masses in the reported data vary on a rather wide range: Ny = 12 bare masses from [1] and
[4] vary from am = 0.01 to am = 0.07 at various lattice couplings. Ny = 16 bare masses from [5]
vary from am = 0.025 to am = 0.15. All data in the Edinburgh plot are also away from the heavy
quark limit and all have my /m, ~ 0.8, showing that all simulated masses are sufficiently light and
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fermions are dynamical. Fig. 3 also importantly suggests that all existing data for the Ny = 12
spectrum cover the same dynamical region; a comparison is therefore justified.

Another interesting insight, useful to discriminate between a QCD-like and a conformal be-
haviour, can be gained through Figs. 4 and 5. At fixed lattice spacing, one can study the ratio
(amz)?/(am) as a function of (my/my)*. This ratio behaves as a constant in QCD to a good ap-
proximation, so that parallel horizontal lines are drawn at different lattice couplings. Fig. 4 also
shows that the ratio increases with decreasing f3;, a signal that the 8 function for this theory is neg-
ative. Within the conformal window the behaviour should be quite different, and in fact analogous
to what is observed in Fig. 5: the ratio should behave as (amy)?/(am) ~ (am)?® / (am) ~ (am)**~",
with 0.5 < & < 1. Separate constant lines at different lattice spacings are thus no longer observed
and data are concentrated around one value of my/m,. Ideally, taken the same value of my/m, at
two different lattice spacings, an ordering opposite to the QCD-like case would suggest a positive
B function. The latter is true at the strong coupling side of the IRFP. A few points in Fig. 5 have
a sufficiently close value of m;/m, and show indeed the inverted ordering proper of a positive 3
function. This is another way to look at the results for the 8 function reported in [1].

3. The vector and axial-vector mass splitting

In [1] it was shown that the lightest pseudoscalar and vector masses at various simulated cou-
plings were well fitted by a power-law with close exponents in the range 0.6-0.7, thus excluding
the Goldstone nature of the pion and showing that data are away from the heavy quark regime. As
a word of caution, we add that the accuracies of the spectrum data and fits are not comparable, as
of today, with those achieved by the fits to the chiral condensate in [1]. The latter have been shown
to be at infinite volume within statistical uncertainties. For the spectrum, finite volume effects are
expected to be present and of the order of about 10%.

The vector and axial-vector mass splitting is another indicator of the restoration of chiral sym-
metry. In Fig. 6 we show our data for 8, = 3.9 and 4.0, and data from [4] for the lightest vector p
and axial-vector a;. The best fits with zero intercept and free exponent are also reported. Best fit
values of the exponents are &,, = 0.67(4), 8 = 0.68(3), at B, = 3.9, J,, = 0.68(7), 6, = 0.67(3),
at B = 4.0, and &, =0.79(9), 8, = 0.72(2) for the data from [4]. All exponents lie around 0.7.
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Figure 6: Mass of the lightest axial-vector m,, (top) and the lightest vector m, (bottom) as a function of
the bare quark mass: f;, = 3.9, 4.0 and am = 0.025,0.05,0.06,0.07 (rightmost), f;, = 2.2 and am = 0.01 to
0.035 from [4] (leftmost). Superimposed curves are fits to a power-law with zero intercept and free exponent.
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Figure 7: The bare pseudoscalar mass squared as a function of the bare chiral condensate (order parameter)
squared in a chirally symmetric (top) and chirally broken (bottom) phase [9].

A power-law fit with free intercept favours a slightly negative intercept with non unit exponent,
thus disfavouring a chirally broken scenario. The goodness of power-law fits with zero intercept
for both vector and axial states suggests their degeneracy in the chiral limit, thus a restored chiral
symmetry. Unfortunately, the Ny = 16 results in [5] seem to be still affected by rather large finite
volume effects, and for this reason we omit them here. We are currently simulating Ny = 16 with
the same lattice action as Ny = 12 [1] in order to meaningfully compare the two theories.

4. Goldstone boson and chiral order parameter

It was observed in [1] that an additional powerful discriminator between exact and sponta-
neously broken chiral symmetry is provided by the relation between the would-be Goldstone bo-
son mass and the chiral condensate. The observation was based on the theoretical analysis of [9].
Here, we analyse all available Ny = 12 data in light of these theoretical premises. In a chirally
symmetric phase the behaviour of m2 as a function of the chiral condensate is as illustrated in
Fig. 7 (upper curve): it has positive curvature, it extrapolates to zero, and the curvature is due to
non zero anomalous dimensions. Importantly, the curvature is opposite to that induced by finite
volume effects. Hence, it provides at the same time a powerful indicator of the presence of fi-
nite volume corrections for lattice data. In a chirally broken phase the curvature is opposite and
it extrapolates to a negative value, Fig. 7 (lower curve). In Fig. 8 we collect our data (right) and
data from [4] (left). Both data sets clearly show a positive curvature, and best fits to a power-law
(amz)* = A(a®(Wy))?% with zero intercept do not suggest qualitative differences between data
sets. We obtain a best fit exponent 8, = 0.66(2) for joint data sets at f;, = 3.9 and 4.0 (see also [1])
and 8, = 0.727(5) for the data from [4].

5. Conclusions

We have reported on the spectrum of the SU(3) gauge theory with twelve flavours in the
fundamental representation. In particular, we have isolated a few signatures that are useful to
discriminate between the hadronic phase, i.e. QCD at zero temperature, and the conformal phase -
proper of theories within the conformal window. In this analysis we have assumed that all our lattice
data, even if inside the conformal window, are away from the IRFP and correlators follow a leading
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Figure 8: (amy)? as a function of (a>(yy))? for all existing Ny = 12 data: (right) updated data from [1] for
Br = 3.9 (red square) and B, = 4.0 (black circle), (left) data from [4] for By = 2.2 (largest volumes only).

exponential decay law; this seems to be supported by the obtained results. Further investigations
at weaker coupling, lighter masses (and longer temporal extents) would provide a useful piece of
additional information. We have analysed the ratio my/m,, the Edinburgh plot and the p — a;
mass splitting for all existing data. Points in the Edinburgh plot stick to a region my/m, ~ 0.8,
despite covering a wide range of bare lattice fermion masses. Fits to the p —a; splitting favour the
degeneracy of the two states in the chiral limit. Finally, we have re-proposed the relation between
the Goldstone boson mass and the chiral order parameter as a powerful indicator of restored chiral
symmetry. All existing data for the Ny = 12 theory seem to consistently favour chiral symmetry
restoration and an almost universal power-law behaviour for all massive states, which is to be
expected inside the conformal window.
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