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On the phase of quark determinant in lattice QCD with finite chemical potential Shinji Takeda

1. Introduction

Understanding the property of the phase of quark determinant is crucial to control the sign
problem in lattice QCD with finite chemical potential. So far the phase has been studied mainly
by two approaches: The first one is on the lattice [1, 2, 3, 4] and there, the Taylor expansion is
used to calculate the phase. Its convergence range, however, is rather restricted to a narrow region,
µ/T < 1. The other approach is the effective theory or the random matrix model [5, 6, 7, 8]. Near
the phase transition, the low energy effective theories may not be reliable. To survey such a region,
it is imperative to work within the first principle framework of QCD itself.

In this context, our motivation here is to obtain and understand the phase of the determinant
more precisely, and irrespective of the location of the phase diagram. Especially, we are interested
in the low T and high µ region. Some details and definition of undefined quantity are given in [9].

2. Winding number expansion (WNE)

A key idea for the purpose given above is the winding number expansion. Actually, this has
good convergence property. To see this, first of all, let us consider the determinant of the Wilson-
Dirac operator, and as well known this can be expressed by the winding number expansion,

det[D(κ ,µ)] = A0(κ)exp

[
− ∑

q∈Z
eqµ/TV (q)(κ)

]
. (2.1)

Note that this is a fugacity expansion of the logarithm of determinant. A0 is independent of µ and
in the following we only consider the essential part of the phase, namely the exponential factor.
Here q is the winding number and V (q) is a sum of all gauge loops which wind around the time-
direction q-times, and is a trace of the SU(3) matrix, so this is just a complex number. This has a
relationship V (−q) =V (q)∗. The relationship means that the clockwise loop and anti-clockwise loop
are related with each other by complex conjugate. After some rearrangement with this formula, we
can identify the pure imaginary part of the exponent as the phase,

θ(µ) = arg(A0)−
∞

∑
q=1

2sinh(qµ/T )Im[V (q)]. (2.2)

Here let us roughly estimate the convergence range of this expansion. If we look at V (q)

which is consisted of the link variables, the each link variable comes together with the hopping
parameter 2κ . Therefore a longer loop is strongly suppressed for a typical value κ = 0.125. For
example, V (q) whose length is minimally NT times q, is of order κqNT , and this is very strong sup-
pression. So now it is a competition between the small factor V (q) and large factor sinh(qµ/T ).
A competition between them determines the convergence range. An effective expansion parameter
now is {eµ/T+NT ln(2κ)}q for large q. This expansion will converge if the exponent here is neg-
ative µ/T < −NT ln(2κ). The convergence range for a typical value of κ = 0.125 which gives
ln(0.125) = −1.386.. is much wider than the Taylor expansion.

To check such behavior, we did some simulation whose parameters are the same as that of
Kentucky group [11] a = 0.328fm, mπ = 834MeV, with lattice size NL = 6 and NT = 4,6,8,12.
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Figure 1: Absolute values of real (blue points) and imaginary (red points) parts of V (q) for q = 1,2, ...,10
with various NT. They are measured at aµ = 0.2 employing 200 phase-quenched configurations. Red line
denotes an expected asymptotic behavior (2κ)qNT as written in the text.
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Figure 2: Absolute value of each term of the phase: 2sinh(qµ/T )|Im[V (q)]| for q = 1,2, ...,10 with various
NT on the same configurations as before

With these input parameters, we generate 200 phase quenched configurations and then measure the
terms in eq.(2.2) from q = 1 to 10. Here aµ is fixed to 0.20, but NT is changed from 4 6 to 8. We
can see that NT = 4 result does not converge but for larger NT the convergence is getting better. So
we could confirm the nice convergent behavior numerically.

3. Upper bound for the phase

Let us derive an upper bound of the phase. We begin with the inequality |x+ y| ≤ |x|+ |y| for
x,y ∈ C repeatedly to find that

|θ | ≤
∞

∑
q=1

2sinh(qµ/T )|Im[V (q)]| ≤
∞

∑
q=1

2sinh(qµ/T )|V (q)|. (3.1)
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Figure 3: Left panel:Histogram of the phase at aµ = 0.2 with various NT. Other parameters are the same as
those of the previous figure. Right panel:Averaged reweighting factor as as function of aµ with various NT.

Next step is to truncate the winding number expansion at q = 1. After this truncation, the upper
bound becomes

∞

∑
q=1

2sinh(qµ/T )|V (q)| −→ 2sinh(µ/T )|V (1)|. (3.2)

And then we apply the hopping parameter expansion to the V (1) and then the leading term turns out
to be this form.

|V (1)| = |tr(H+)|+O((2κ)2NT)

= (2κ)NT · trspin[(P(4))NT ] ·

∣∣∣∣∣∑x
trcolor

[
NT

∏
x4=1

U4(x,x4)

]∣∣∣∣∣+O(NT(2κ)NT+2)

≤ (2κ)NT ·2 ·3N3
L, (3.3)

where P+ is the projection operator for the time direction. We have used the fact that the polyakov
loop is just a trace of SU(3) matrix thus this has an upper bound 3N3

L. By combining all, one can
arrive at an approximated upper bound for the phase.

|θ | ≤ 12N3
L(2κ)NT sinh(µ/T ). (3.4)

This says that the phase grow with the spatial volume factor but gets exponentially suppressed by
increasing NT. So in a finite box and large NT, one can set an upper bound.

To examine the behavior of phase, we measure the phase exactly, that is, no noise, no expan-
sion, on the same phase quenched configurations as before and its histogram is shown in the left
panel of Fig. 3. The smaller NT cases show wide distribution, but for large NT it is getting sharp.
So we confirmed that the fluctuation of the phase gets small for large NT.

The above result indicates that for large NT, the reweighting factor is very close to unity. So,
we measure it with the various value of aµ as shown in the right panel of Fig. 3. Note that we fix
the lattice spacing. So changing the NT means changing the temperature. The small NT data takes
rather small value, but for large NT, it tends to get close to the unity.
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Figure 4: Quark number density (upper) and its susceptibility (lower) as a function of aµ (or the baryon
chemical potential µB = 3µ in unit of the temperature for upper horizontal axis) with and without the phase
factor. Light blue dotted arrow shows the location of transition point determined by the canonical approach
[11]. Red solid arrow shows the location of a peak of the quark number susceptibility (aµ = 0.21). The
results at aµ = 0.7 and 0.8 have the huge error bar because of the extremely small reweighting factor (an
appearance of the sign problem) as shown in the previous figure.

4. Phase reweighting simulation

From this nice behavior of the reweighting factor, we got a motivation to do the phase reweight-
ing.

〈O〉 =
〈OeiNfθ 〉||
〈eiNfθ 〉||

, (4.1)

where the reweighted and the phase-quenched ensembles averages are defined as

〈O〉 =
∫
[dU ]e−SG(detD)NfO[U ]∫

[dU ]e−SG(detD)Nf
, (4.2)

〈O〉|| =
∫
[dU ]e−SG |detD|NfO[U ]∫

[dU ]e−SG |detD|Nf
. (4.3)

Before showing the results, we want to give a remark that we used a reduction technique, and
thanks to that we can now exactly calculate the phase, the quark Number and its susceptibility. So,
from now forget about the winding number expansion.

Fig. 4 is the number density and susceptibility together with the phase quenched results. For
larger aµ , the data is noisy due to the small reweighting factor as shown before. The light blue
arrow indicates the transition point at 150MeV which is determined by the canonical approach by
Kentucky group [11]. Such transition like behavior can be clearly seen in the Susceptibility where a
peak is observed and its location (the red arrow) is roughly consistent with that of Kentucky group.

Such transition like behavior can also be observed in the polyakov loop in Fig. 5. The location
of the peak in its susceptibility is almost same as that of the quark number.

Fig. 6 is a histogram of the plaquette value on the phase-quenched configuration. NT is fixed
to 4, and aµ is changed. We can see a double peak at aµ = 0.22 therefore this is very likely the
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Figure 5: Averaged real part of the polyakov loop (upper) and its susceptibility (lower) as a function of aµ
with and without the phase factor.
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Figure 6: Histogram of plaquette value on the phase-quenched configuration for NT = 4 with various aµ .

first order phase transition. Of course, to pin down the order of the phase transition, we have to do
a finite size scaling.
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