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We test the AdS/CFT correspondence by calculating Wilson loops inN = 4 super Yang-Mills

theory onR×S3 in the planar limit. Our method is based on a novel large-N reduction, which re-

duces the problem to Monte Carlo calculations in the plane-wave matrix model or the BMN matrix

model, which is a 1d gauge theory with 16 supercharges. By using the gauge-fixed momentum-

space simulation, we obtain results respecting 16 supersymmetries. We report on the Monte Carlo

results for the BPS circular Wilson loop, which reproduce the exact result up to strong coupling.

As a future prospect, we calculate a track-shaped Wilson loop from the gravity side, which shows

that a clear test of the AdS/CFT for the non-BPS case is also feasible.
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1. Introduction

The gauge-gravity duality [1] has been one of the most important subjects in string theory over
the past decade. The most typical example is the so-called AdS/CFT correspondence between type
IIB superstring theory onAdS5×S5 and 4dN = 4 SU(N) super Yang-Mills theory (SYM). Even
in this case, however, a complete proof of the duality is still missing. One of the reasons is that the
parameter region described by the classical supergravity on the string theory side corresponds to
the strongly coupled region in the planar large-N limit on the gauge theory side. In order to study
the strongly coupled 4dN = 4 SYM from first principles, one needs to have a non-perturbative
formulation such as the lattice QCD. The problem here is that the lattice regularization necessarily
breaks translational symmetry, which is included in the supersymmetry (SUSY). In order to restore
SUSY in the continuum limit, one generally has to fine-tune parameters in the lattice action1.

In this work we adopt an alternative regularization method based on the idea of the large-
N reduction [3], which preserves 16 supersymmetries. Since 4dN = 4 SYM has conformal
symmetry, the theory onR4 is equivalent to the theory onR×S3 through conformal mapping.
The novel large-N reduction [4] relates this theory to a reduced model, which can be obtained by
shrinking theS3 to a point. The resulting one-dimensional gauge theory with 16 supercharges can
be studied by using the gauge-fixed momentum-space simulation [5] as in recent studies of the D0-
brane system [6]. Thus we can perform Monte Carlo calculations in 4dN = 4 SYM respecting
SUSY maximally and without fine-tuning2.

We are going to test the AdS/CFT correspondence by calculating BPS and non-BPS Wilson
loops in 4dN = 4 SYM3. In particular, we reproduce an exact result for the circular Wilson loop,
which serves as a check of our method. For a non-trivial test of the AdS/CFT correspondence,
we consider the track-shaped Wilson loop as an example of non-BPS operators, which cannot be
calculated by analytic methods relying on SUSY. We calculate it on the gravity side by numerically
solving a classical string equation of motion.

2. Large-N reduction for N = 4 SYM on R×S3

Let us first discuss the novel large-N reduction forN = 4 SYM on R×S3. By collapsing the
S3 to a point, we obtain the plane wave matrix model (PWMM) or the BMN matrix model [10]4,
whose action is given by

SPW =
1

g2
PW

∫
dt tr

[
1
2
(DtXM)2− 1

4
[XM,XN]2 +

1
2

Ψ†DtΨ− 1
2

Ψ†γM[XM,Ψ]

+
µ2

2
(Xi)2 +

µ2

8
(Xa)2 + iµεi jkXiXjXk + i

3µ
8

Ψ†γ123Ψ
]

. (2.1)

Here the parameterµ is related to the radius ofS3 asRS3 = 2
µ , and the covariant derivative is defined

by Dt = ∂t − i[A, · ], whereA(t), as well asXM(t) andΨ(t), is anN×N hermitian matrix. The

1Recently it was claimed that fine-tuning can be avoided at least up to the 1-loop level by using a lattice formulation
with topological twist [2].

2See refs. [7] for proposals for finiteN.
3See refs. [8, 9] for some preliminary results on the Wilson loop and correlation functions.
4Properties of this model at finite temperature are studied at weak coupling [11, 12] and at strong coupling [13].
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range of indices is given by1≤M,N≤ 9, 1≤ i, j,k≤ 3 and4≤ a≤ 9. The model has the SU(2|4)
symmetry with 16 supercharges.

The PWMM possesses many discrete vacua representing multi fuzzy spheres, which are given
explicitly by

Xi = µ
ν⊕

I=1

(
L(nI )

i ⊗1kI

)
with

ν

∑
I=1

nI kI = N , (2.2)

where L(r)
i are ther-dimensional irreducible representation of the SU(2) algebra[L(r)

i ,L(r)
j ] =

i εi jk L(r)
k . These vacua preserve the SU(2|4) symmetry, and are all degenerate.

In order to retrieve the planarN = 4 SYM on R×S3, one has to pick up a particular back-
ground from (2.2), and consider the theory (2.1) around it. Let us consider the vacuum defined
by

kI = k , nI = n+ I − ν +1
2

for I = 1, · · · ,ν , (2.3)

and take the large-N limit in such a way that

k→ ∞ ,
n
ν
→ ∞ , ν → ∞ , with λPW≡ g2

PWk
n

fixed . (2.4)

Then the resulting theory is claimed [4] to be equivalent5 to the planar limit ofN = 4 SYM on
R×S3 with the ’t Hooft coupling constant given by

λSYM = 2π2λPW(RS3)3 =
16π2k

n
g2

PW

µ3 . (2.5)

The above equivalence may be viewed as an extension of the large-N reduction [3], which as-
serts that the large-N gauge theories can be studied by dimensionally reduced models. The original
idea for theories compactified on a torus can fail due to the instability of the U(1)D symmetric vac-
uum of the reduced model [16]. This problem is avoided in the novel proposal since the PWMM
is a massive theory and the vacuum preserves the maximal SUSY. This regularization respects 16
supersymmetries, which is half of the full superconformal symmetry ofN = 4 SYM on R×S3.
Since any kind of UV regularization breaks the conformal symmetry, this regularization is optimal
from the viewpoint of preserving SUSY.

3. Wilson loops in 4dN = 4 SYM

Let us consider the following type of Wilson loop

W(C) =
1
N

Tr P exp
∮

C
ds

(
iAR4

µ ẋµ(s)+ |ẋµ(s)|XR4

a θa

)
, (3.1)

whereẋµ(s)≡ dxµ (s)
ds andθa is a constant which satisfiesθaθa = 1. The fieldsAR4

µ andXR4

a represent
the gauge field and the six scalars in 4dN = 4 SYM onR4, respectively. Due to the particular way

5See refs. [14] for earlier studies that led to this proposal. This equivalence was checked at finite temperature in the
weak coupling regime [12]. It has also been extended to general group manifolds and coset spaces [15].
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in which the scalars appear, one can obtain predictions from the gravity side based on the AdS/CFT
correspondence as

lim
N→∞,λSYM→∞

〈
W(C)

〉
SYM

= e−S(C) , (3.2)

whereS(C) represents the area of the minimal surface spanning the loopC on the boundary of the
AdS space.

For the circular Wilson loopW(Ccirc), which is a (1/2-)BPS operator, there is an exact result
on the gauge theory side, which is obtained by summing up planar ladder diagrams or by using the
localization method [17]. The result is given by

lim
N→∞

〈
W(Ccirc)

〉
SYM

=
√

2
λSYM

I1
(√

2λSYM

)
(3.3)

' e
√

2λSYM

(π
2

)1/2(2λSYM)3/4
for λSYM À 1 , (3.4)

whereI1(x) is the modified Bessel function of the first kind. The result is independent on the radius
of the circle, which is a consequence of the scale invariance ofN = 4 SYM. At strong coupling
it agrees with the result obtained from the dual geometryS(Ccirc) = −√2λSYM [18]. This is an
explicit example of the AdS/CFT correspondence. We use the exact result (3.3) for arbitraryλSYM

to check our calculation method.
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Figure 1: (Left) The track-shaped Wilson loop has two straight lines of lengthT, which are anti-parallel to

each other, and two semi-circles with radiusL/2. (Right) The numerical results for−S(Ctrack(T,L))√
2λSYM

is plotted as

a function ofT/L. The circle atT = 0 represents the circular limit (T → 0) and the straight line represents
a fit to the anti-parallel-line limit (T → ∞) with an additive constant treated as a free parameter.

The track-shaped Wilson loop has two parametersT andL as depicted in figure1 (Left). It
has two limits: theT → 0 limit, which corresponds to the circular Wilson loop, andT → ∞, which
corresponds to two anti-parallel lines. Since the track-shaped Wilson loop forT 6= 0 is a non-
BPS operator, it cannot be calculated on the gauge theory side by such analytic methods as the
localization method which rely on SUSY. The limit (T →∞) of two anti-parallel lines is calculated
based on the AdS/CFT correspondence from the gravity side as [19]

lim
T→∞

1
T

ln
〈

W(Ctrack(T,L))
〉

SYM
=−

√
2λSYM

4π2

Γ(1/4)4

1
L

, (3.5)
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which is consistent with the conformal symmetry of the theory, and also with the fact thatN = 4
SYM onR4 is in the Coulomb phase. Here we extend the calculation on the gravity side to arbitrary
T/L, and obtain explicit numerical results by solving the classical string equation of motion. In
figure1 (Right) we plot the minimal surface obtained by Newton’s method.

4. Monte Carlo method

In order to simulate the PWMM (2.1), we compactify thet-direction to a circle of circumfer-
enceβ . Since we are interested in the properties at zero temperature, we impose periodic boundary
conditions on both scalarsXM(t) and fermionsΨα(t), which keep SUSY intact. In Fourier-mode
simulation [5], we first fix the gauge symmetry completely by choosingA(t) = 1

β diag(α1, · · · ,αN)
with −π < αa ≤ π, and then make a Fourier expansionXM(t) = ∑Λ

n=−Λ X̃M,neiωnt (ω ≡ 2π
β ) and

similarly for the fermions. The upper boundΛ on the Fourier modes plays the role of the UV
cutoff. The original PWMM can be retrieved by just taking the limitsβ → ∞ and Λ

β → ∞ since
there are neither UV nor IR divergences. The model regularized by finiteβ andΛ can be simulated
by the RHMC algorithm. This method has been applied extensively to the D0-brane system cor-
responding toµ = 0, and the results confirmed the gauge/gravity duality for various observables
[6].6 Since the parameterµ in the action (2.1) can be scaled away by appropriate redefinition of
fields and parameters, we takeµ = 2 (RS3 = 1) without loss of generality.

The Wilson loop inN = 4 SYM can be calculated in PWMM in the following way. When we
perform the conformal mapping fromR4 to R×S3, the radial and angular directions are mapped to
the time andS3-directions, respectively. Therefore, an arbitrary loop on a plane inR4 is mapped
to a loop onR×S3, which can be projected to a great circle onS3. Such a Wilson loop can be
represented in the large-N reduced model as

Wred(C) =
1
N

Tr P exp
∮

C
ds

(
iA0

dt
ds

+ iXie
i
µ ẋµ(s)+

∣∣ẋµ(s)
∣∣Xaθa

)
, (4.1)

whereei
j = ei

j(x
µ(s)) is the dreibein onS3. The expectation value of this operator is related to the

average of the original Wilson loop as [21]
〈

W(C)
〉

SYM
=

〈
Wred(C)

〉
, (4.2)

where〈· · · 〉 on the right-hand side denotes the expectation value in the large-N reduced model
(PWMM). In the case of circular Wilson loop, the relation (4.2) was confirmed by reproducing
the SYM result (3.3) from the reduced model to all orders in perturbation theory assuming that
non-ladder diagrams do not contribute [22].

5. Numerical results

In figure2 we present our preliminary results for the circular Wilson loop. We have performed
the Λ → ∞ extrapolation usingΛ = 6,8,10,12 assuming that finiteΛ effects are O(1/Λ). The
background is chosen to be(n,ν) = (3

2,2) and we performed an extrapolation tok = ∞ using the

6See refs. [20] for Monte Carlo calculations based on the lattice regularization.
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data fork = 2,3,4,5 assuming that the finite-k effects are O(1/k2). We also plot the exact result
(3.3). Except for the data point at

√
λSYM = 4, the agreement with the exact result is promising.

Note, in particular, that we already start to observe a bent from the weak coupling behavior towards
the strong coupling behavior. This is remarkable considering the rather small matrix size. We
consider this as a result of the fact that our formulation respects sixteen supersymmetries.
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0.4

0.6

0.8

1

0 1 2 3 4 5

〈ln
W

〉/√
λ S

Y
M

√λSYM

exact
1-loop
strong

g2
PWN 0.13 0.30 0.51 0.75 1.00 1.63 2.37 3.64

β 10.0 7.50 6.25 5.50 5.00 4.25 3.75 3.25

λSYM 0.55 1.30 2.25 3.30 4.39 7.14 10.4 16.0

Figure 2: The log of the circular Wilson loop normalized by
√

λSYM is plotted against
√

λSYM. The values of
g2

PWN andβ (and the corresponding values ofλSYM) we use are listed in the table. The solid line represents
the exact result (3.3). The dashed line represents the behavior (3.4) at strong coupling, whereas the dotted
line represents the leading perturbative behaviorln〈W〉 ' 1

4λSYM.

6. Summary and discussions

We have investigated nonperturbative properties of the 4d SU(∞) N = 4 SYM from first-
principles respecting 16 supersymmetries. In particular, we have reproduced the exact result (3.3)
up toλSYM' 10.4. As a nontrivial check of the AdS/CFT correspondence, we are planning to study
the track-shaped Wilson loop. We have obtained explicit results on the gravity side by numerically
solving a classical string equation of motion. The results nicely interpolate the two limits, which
are already calculated, i.e., the circular loop and the anti-parallel lines. We hope to report on the
calculations on the gauge theory side in the forth-coming publication.
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