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1. Introduction

The high-density environment at the core of neutron stars may allow the nucleation of small
droplets of quark matter, that under appropriate conditions may grow converting a large part of the
star into the quark phase [1, 2, 3, 4, 5, 6].

The nucleation of a small droplet is driven by strong interactions; thus, quark and lepton flavors
must be conserved during the process leaving just deconfined quark matter that is transitorily out
of equilibrium with respect to weak interactions [1]. When color superconductivity is included
in the analysis together with flavor conservation, it is found that the most likely configuration of
the just deconfined phase is a two-flavor color superconductor (2SC) provided the pairing gap is
large enough [7]. In this work, we show how finite size effects enter in the description of the
just deconfined drops. To this end we employ the Nambu-Jona-Lasinio (NJL) model for quark
matter and include finite size effects within the multiple reflection expansion (MRE) framework
[8, 9, 10, 1]. Through this analysis we can determine the density of hadronic matter at which
deconfinement is possible for different radii of the just formed quark drops using typical conditions
expected in the interior of protoneutron stars (PNSs), i.e. temperatures in the range of 0−60 MeV
and chemical potentials of the trapped neutrino gas up to 200 MeV. Notice that to form a finite size
drop some over-density is needed with respect to the bulk transition density in order to compensate
the surface and curvature energy cost. Since this energy cost depends on the drop radius R, so
does the necessary over-density necessary to nucleate it. Thus, we can derive a critical fluctuation
spectrum (δρ/ρ versus R) delimiting which over-densities can deconfine and grow unlimitedly and
which ones will shrink back to hadronic matter.

2. Equations of state

We adopt a two-phase model in which hadronic and quark matter are described by different
equations of state.

The hadronic phase is modeled by the non-linear Walecka model including the whole baryon
octet, electrons and neutrinos with the parametrizations GM1 and GM4 given in [1]. The equation
of state is rather stiff and gives a maximum mass of 2 M�, that seems to be adequate in light of the
recently determined mass of the pulsar PSR J1614-2230 with M = 1.97±0.04M� [11]. This is the
largest mass reported ever for a pulsar with a high precision.

The just deconfined quark matter phase is described by a SU(3) f NJL effective model with
the inclusion quark-quark interactions, which are responsible for color superconductivity [1]. The
effect of finite size is included in the thermodynamic potential adopting the MRE formalism [1].
The modified density of states of a finite spherical droplet is given by

ρMRE(k,m f ,R) = 1+
6π2

kR
fS +

12π2

(kR)2 fC (2.1)

where fS = − 1
8π

(
1− 2

π
arctan k

m f

)
and fC = 1

12π2

[
1− 3k

2m f

(
π

2 − arctan k
m f

)]
are the surface and

curvature contributions to the new density of states respectively.
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The full thermodynamic potential reads

Ω
Q
MRE
V

= 2
∫

Λ

ΛIR

k2dk
2 π2 ρMRE

9

∑
i=1

ω(xi,yi)+
1

4G
(σ2

u +σ
2
d +σ

2
s )+

|∆|2

2H
−Pe−Pνe +Pvac (2.2)

where ΛIR and Λ are the cutoffs of the model and ω(x,y) is defined by

ω(x,y) =−[x+T ln[1+ e−(x−y)/T ]+T ln[1+ e−(x+y)/T ]], (2.3)

with

x1,2 = E, x3,4,5 = Es,

x6,7 =

√[
E±

(µur +µdg)

2

]2

+∆2, x8,9 =

√[
E±

(µug +µdr)

2

]2

+∆2,

y1 = µub, y2 = µdb, y3 = µsr, y4 = µsg, y5 = µsb,

y6,7 =
µur−µdg

2
, y8,9 =

µug−µdr

2
. (2.4)

Here, E =
√

k2 +M2 and Es =
√

k2 +M2
s , where M f = m f +σ f . Note that in the isospin limit we

are working σu = σd = σ and, thus, Mu = Md = M. To obtain the total thermodynamic potential
of the quark matter phase the contribution of electrons −Pe, neutrinos −Pνe , as well as a vacuum
constant +Pvac has been added. The values of the quark masses, the coupling constants, and the
cutoffs ΛIR and Λ are given in Ref. [1].

From the grand thermodynamic potential Ω
Q
MRE we can readily obtain the number density

of quarks of each flavor and color n f c ≡ −V−1∂Ω
Q
MRE/∂ µ f c, the number density of electrons

ne = −V−1∂Ω
Q
MRE/∂ µe, and the number density of electron neutrinos nνe = −V−1∂Ω

Q
MRE/∂ µνe .

The corresponding number densities of each flavor, n f , and of each color, nc, in the quark phase
are given by n f = ∑c n f c and nc = ∑ f n f c respectively. The baryon number density reads nB =
1
3 ∑ f c n f c = (nu + nd + ns)/3. The Gibbs free energy per baryon is g = 1

nB
(∑ f c µ f c n f c + µe ne +

µνe nνe).
Finally, the pressure PQ is given by

PQ ≡−∂Ω
Q
MRE

∂V

∣∣∣∣
T,µ,S,C

= −2
∫

Λ

ΛIR

k2dk
2 π2

9

∑
i=1

ω(xi,yi)−
1

4G
(σ2

u +σ
2
d +σ

2
s )−

|∆|2

2H

+Pe +Pνe−Pvac, (2.5)

the surface tension is

α ≡ ∂Ω
Q
MRE

∂S

∣∣∣∣
T,µ,V,C

= 2
∫

Λ

ΛIR

kdk fS

9

∑
i=1

ω(xi,yi), (2.6)

and the curvature energy density is

γ ≡ ∂Ω
Q
MRE

∂C

∣∣∣∣
T,µ,V,S

= 2
∫

Λ

ΛIR

dk fC
9

∑
i=1

ω(xi,yi). (2.7)

Here we are considering a spherical drop, i.e. the area is S = 4πR2 and the curvature is C = 8πR.
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3. Conditions for deconfinement

In order to study just deconfined matter, a suitable number of conditions must be imposed on
the variables {µ f c},µe,µνe ,σ ,σs and ∆ in the formulae of the previous section. Three of these con-
ditions are consequences from the fact that the thermodynamically consistent solutions correspond
to the stationary points of Ω

Q
MRE with respect to σ , σs, and ∆. Thus, we have

∂Ω
Q
MRE

∂σ
= 0,

∂Ω
Q
MRE

∂σs
= 0,

∂Ω
Q
MRE

∂ |∆|
= 0. (3.1)

The condition of flavor conservation between hadronic and deconfined quark matter is written as

Y H
f = Y Q

f f = u,d,s,e,νe (3.2)

being Y H
f ≡ nH

f /nH
B and Y Q

i ≡ nQ
f /nQ

B the abundances of each particle in the hadron and quark phase
respectively. It means that the just deconfined quark phase must have the same “flavor” composition
than the β -stable hadronic phase from which it has been originated. Notice that, since the hadronic
phase is assumed to be electrically neutral, flavor conservation ensures automatically the charge
neutrality of the just deconfined quark phase.

Additionally, the deconfined phase must be locally colorless; thus it must be composed by an
equal number of red, green and blue quarks: nr = ng = nb. Also, ur, ug, dr, and dg pairing will
happen provided that |∆| is nonzero, leading to nur = ndg and nug = ndr. In order to have all Fermi
levels at the same value, we consider [7] nug = nur and nsb = nsr leading to nur = nug = ndr = ndg

and nsr = nsg = nsb [7].
For a spherical droplet the condition for mechanical equilibrium reads [1]:

PQ− 2α

R
− 2γ

R2 −PH = 0. (3.3)

Notice that in the bulk limit R→ ∞ we find the standard bulk condition PH = PQ.
Finally, we assume thermal and chemical equilibrium, i.e. the Gibbs free energy per baryon

are the same for both hadronic matter and quark matter at a given common temperature. Thus, we
have

gH = gQ , T H = T Q . (3.4)

If we fix the radius R of the deconfined drop for a given temperature T H and neutrino chemical
potential of the trapped neutrinos in the hadronic phase µH

νe
, there is an unique hadronic pressure

PH at which the equilibrium conditions are fulfilled. In the present work we want to describe
thermodynamic conditions analogous to those encountered in protoneutron stars; thus, we use T .
60 MeV and µH

νe
. 200 MeV.

4. Fluctuations and deconfinement

According to the theory of homogeneous nucleation, the free energy involved in the formation
of a spherical quark bubble of radius R is given by [1]

∆Ω =−4π

3
R3

∆P+4παR2 +8πγR, (4.1)
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Figure 1: Critical spectrum for fluctuations that allow deconfinement of hadronic matter in a protoneutron
star. The results were calculated using GM4 + NJL set1 on the left panel and GM4 + NJL set 2 on the right
panel. The spectrum does not depend significantly on the temperature and the chemical potential of trapped
neutrinos. Fluctuations in hadronic matter having a given δρH/ρH are able to grow if they have a size R
larger than the here-shown critical one.
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Figure 2: Nucleation rate for bubbles of the critical size.
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where ∆P = PQ−PH is the pressure difference between internal and external parts of the bubble.
For given ∆P, α and γ , the extremal points (maximum or minimum) of ∆Ω are obtained from
∂∆Ω/∂R = 0, which leads to Eq. (3.3). Thus, the critical radii are given by:

R± =
α

∆P

(
1±
√

1+b
)
, (4.2)

with b≡ 2γ∆P/α2.
For b < −1 both solutions are complex and ∆Ω is a monotonically decreasing function of R.

This means that any small fluctuation of one phase into the other will gain energy by expanding and
a rapid phase transition is likely to occur. For b≥−1, ∆Ω has a local minimum at R− and a local
maximum at R+. For ∆Ω(R+)< 0 we have again that any small fluctuation is energetically favored.
For ∆Ω(R+)> 0 bubbles with radii larger than R+ gain energy by growing unlimitedly, while those
below the critical size gain energy by shrinking to zero (if R− < 0) or to R− (if R− > 0 ). In this
case, the standard assumption in the theory of bubble nucleation in first order phase transitions is
that bubbles form with a critical radius R+ [1].

The approach we adopted in the previous section is closely related to what we explained in the
above paragraph. Instead of finding the critical radius for arbitrary values of ∆P, α and γ , we fixed
R and found the corresponding ∆P, α and γ that satisfy the conditions presented in the previous
section. Since Eq. (3.3) is satisfied by construction, the radius R is precisely the critical radius R+

introduced in Eq. (4.2), because we choose the solution that verifies ∂ 2∆Ω/∂R2 < 0.
Now, we consider hadronic matter at the bulk transition density, i.e. the density for which

deconfinement is possible if R −→ ∞. While deconfinement is energetically favored in this case,
this is not possible in practice because real drops have a finite size, and there is a surface and
curvature energy cost for nucleating them. However, energy-density fluctuations with radius R that
drive some part of the hadron fluid to a density ρH

∗ = ρH
bulk +δρH may be energetically favored. To

quantify this, we construct a critical spectrum δρH/ρH as a function of R for different values of
T and µH

νe
as seen in Fig. 1. Fluctuations of a given over-density δρH/ρH must have a size larger

than the critical value given in Fig. 1 in order to grow. Equivalently, fluctuations of a given size
must have an over-density δρH/ρH larger than the critical one for that size [1].

We can calculate the formation rate of critical bubbles through

Γ≈ T 4 exp(−δΩc/T ). (4.3)

where in our case δΩc is the work required to form a quark bubble with the critical radius from
hadronic matter at the bulk transition point

δΩc ≡−
4π

3
R3(PQ−PH

bulk)+4παR2 +8πγR, (4.4)

Instead of T 4, different prefactors are used for Γ in other works [3]. However, this fact does not
affect significantly the results because Γ is largely dominated by the exponent in Eq. (4.3); i.e. we
always have log10 Γ ≈ log10(prefactor)− δΩc/[T ln(10)] with the second term much larger than
the first.

The results are given in Fig. 2 and show that critical bubbles with R & 800 fm are strongly
disfavored while those with R . 800 fm have a huge rate. In practical situations, i.e. at neutron star
cores, this means that if fluctuations lead hadronic matter to the bulk transition point, quark drops
with R . 800 fm will nucleate instantaneously.
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5. Summary and Conclusions

When the bulk transition density is reached in the core of a neutron star, it is energetically
favored to convert a macroscopically large portion of hadronic matter into quark matter. But in
practice, it is needed some over-density with respect to the bulk transition density in order to
compensate the surface and curvature energy cost of a finite drop. Since this energy cost de-
pends on the drop radius, so does the necessary over-density and over-pressure necessary to nu-
cleate it. Thus, we can derive a critical fluctuation spectrum δρH/ρH versus R delimiting which
fluctuations are able to grow unlimitedly and which will shrink (see Fig. 1). Typically, fluctua-
tions of δρH/ρH ∼ 0.001− 0.1 above the bulk point are needed for the nucleation of drops with
R ∼ 10− 1000 fm. However, the nucleation rates Γ vary over several orders of magnitude. Our
results show that drops with R∼ 2−800 fm have a huge nucleation rate while those with R & 800
fm are strongly suppressed (see Fig. 2).

We can also show [1] that fluctuations in the temperature and in the chemical potential of
trapped neutrinos are not very important for deconfinement. This is in contrast with previous
results found within the frame of the MIT Bag model (e.g. in [12] it is argued that nucleation is
suppressed at T . 2 MeV and in [13] it is found that neutrino trapping precludes deconfinement).
Instead, fluctuations in the energy density are the more efficient way to trigger the transition.

Notice that the nucleation rate and the typical radii of deconfined drops are also very different
from the values found within the MIT Bag model (see e.g. [3] and references therein). The drops
studied in [3] have typically radii less than 10 fm and a long nucleation time, in contrast ours may
have much larger radii and nucleate almost instantaneously. This is due to the use of different
equations of state for the quark phase as well as for the different treatments of the surface and
curvature terms. While in [3] the surface tension is assumed to be constant (α = 30 MeV fm−2), in
our work α and γ are calculated self consistently within the MRE formalism resulting non-constant
values around 140 MeV fm−2 and 110 MeV fm−1 respectively. Since our surface tension is larger,
larger critical drops are obtained. For R . 800 fm, δΩc is negative and the exponents of Eq. (4.3)
are large positive numbers that result in huge nucleation rates. In the context of protoneutron stars
the main conclusion is that if the bulk transition point is attained near the star centre, quark matter
drops with R . 800 fm will nucleate instantaneously. Since the bulk transition density is∼ 5−6ρ0,
this should happen for stars with masses larger than ∼ 1.5−1.6M�.
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