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Relativistic models for finite nuclei contain spurious center-of-mass motion due to the fact that
in most applications the nuclear many-body problem is treated in the mean-field approximation,
where invariably the nuclear wave function is taken as a single Slater determinant with wave
functions always described in a space-fixed frame. We use the Peierls-Yoccoz projection method
to restore the broken translational invariance and reparametrize the model. The consequences for
the energy, charge radius and a simple application for the form factor calculation are presented.
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CM corrections in Relativistic Mean Field Models S. S. Avancini

1. Introduction

Projection methods were widely applied to non-relativistic mean field solutions in the past, in
order to restore the broken symmetries that inevitably arise when the mean field approach is imple-
mented for a many body system. Here we apply one of those restoration methods, the translational
symmetry restoration, to a Dirac-Hartree Slater determinant. The method was already developed
for a σ -ω model of nuclei [1], where the mesonic degrees of freedom were explicitly taken in
to account in the projection procedure. Here we use a simpler version of the method but include
the ρ and δ mesons in a density-dependent parametrization. As the center-of-mass (CM) energy
should be included in the parametrization, we find a new set that fit the energy and charge radius
well for spherically symmetric nuclei. Although the effect on other observables will be properly
investigated in a forthcoming paper, a simple application to the 4He charge form factor is shown at
the end of this contribution.

2. Formalism and Model parametrization

The Lagrangian density for the model is:

L = ∑
i=p,n

Li+L σ+L ω+L ρ+L δ+L γ , (2.1)

where the nucleon Lagrangian reads, Li = ψ̄i
[
γµ iDµ −M∗

]
ψi, with M∗ = M−Γsφ −Γδ τ ·δ and

iDµ =
(

i∂ µ −ΓωV µ − Γρ

2 τ ·bµ − e 1+τ3
2 Aµ

)
. The meson and electromagnetic Lagrangian densities

are:

Lσ =
1
2
(
∂µφ∂

µ
φ −m2

s φ
2) , Lω =

1
2

(
−1

2
ΩµνΩ

µν +m2
vVµV µ

)
Lρ =

1
2

(
−1

2
Bµν ·Bµν +m2

ρbµ ·bµ

)
, Lδ =

1
2
(∂µδ∂

µ
δ −m2

δ
δ

2) , Lγ =−
1
4

FµνFµν ,

where Ωµν = ∂µVν−∂νVµ , Bµν = ∂µbν−∂νbµ−Γρ(bµ×bν) and Fµν = ∂µAν−∂νAµ . The elec-
tromagnetic coupling constant is e =

√
4π/137 and τ is the isospin operator. The set of Dirac and

Klein-Gordon equations which result from the above Lagrangian are solved self-consistently in the
mean-field approximation imposing the conditions of static and spherically symmetric fields. For
that purpose we specify the functional form of the various couplings as, Γi(ρ) = Γi(ρ0)hi(x), x =
ρ/ρ0, with

hi(x) = ai
1+bi(x+di)

2

1+ ci(x+di)2 , i = σ ,ω, hi(x) = ai exp[−bi(x−1)]− ci(x−di), i = ρ, δ . (2.2)

The parameters ai,bi,ci,di and Γi(ρ0) are usually adjusted to reproduce nuclear matter properties as
well as binding energy and charge radius of selected nuclei along the periodic table. The nucleon
and meson masses are taken as fit parameters or from experiment. From the model Lagrangian,
eq.(2.1), one easily obtains the corresponding Hamiltonian H, which is obviously translationally
invariant. In order to perform the linear momentum projection, it is then useful to construct the
Hamiltonian operator in the nucleonic field space, which can be expanded as

ψ(x) = ∑
α

uα(~r)e−iEα tbα +∑
α

vα(~r)eiEα td†
α , ψ

†(x) = ∑
α

u†
α(~r)e

iEα tb†
α +∑

α

v†
α(~r)e

−iEα tdα ,
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where uα(~r) and vα(~r) form a complete set of Dirac spinors in the coordinate space, and bα and b†
α ,

dα and d†
α , denote the creation and the annihilation operators for the nucleons and anti-nucleons

respectively in the state α . Neglecting the anti-particles (no-sea approximation), we thus obtain
[2]:

H = ∑
αα ′

∫
u†

α ′(~r) t̂ uα(~r)d~r b†
α ′bα

+
1
2 ∑

α,α ′,β ,β ′

∫
u†

α ′(~r1)u
†
β ′(~r2)Vα,α ′(~r1,~r2)×uβ (~r2)uα(~r1)d~r1 d~r2 b†

α ′b
†
β ′bβ bα (2.3)

with the kinetic and potential terms given by

t̂ = (−iγ0~γ.~∇+ γ0M) (2.4)

Vα,α ′(~r1,~r2) = ∑
i=σ ,δ ,ω,ρ,γ

1
4π

γ0(1)γ0(2)Λi(1,2)×
exp{−r[m2

i − (Eα −Eα ′)
2]1/2}

r
, (2.5)

where r = |~r1−~r2|, Λσ (1,2) =−Γs(1)Γs(2), Λδ (1,2) =−τ(1).τ(2)Γδ (1)Γδ (2),
Λω(1,2) = γµ(1)γµ(2)Γv(1)Γv(2), Λρ(1,2) = τ(1).τ(2)γµ(1)γµ(2)Γρ(1)Γρ(2) and Λγ(1,2) =
e2γµ(1)γµ(2)δτ31/2. Note the implicit dependence of the coupling constants on the position through
the density, i.e., Γs(1) means Γs(ρ(~r1)), etc. The energy dependence (Eα −Eα ′) is disregarded in
the Hartree approximation. In order to restore the translational invariance we use a variation-
before-projection procedure, which is executable in the context of relativistic nuclear structure
calculations. We use the Pierls-Yoccoz projector[3] defined as:

P~p =
1

(2π)3

∫
exp[i(~̂P−~p) ·~a]d3~a , (2.6)

where ~̂P = ~̂PA is the total linear momentum operator and ~p the corresponding eigenvalue. The
center-of-mass projected energy is given by:

E~p=0 =
〈Ψ|HP~p=0 |Ψ〉
〈Ψ|P~p=0 |Ψ〉

, (2.7)

where |Ψ〉 is the A-particle Slater determinant obtained from our Hartree variational approach.
Defining now U(±~a/2) = exp[±i~a/2 · ~̂P] and noting that U is the product of one-body operators, it
follows that

∣∣Ψ̃(±)〉≡U(±~a
2) |Ψ〉 is also a Slater determinant with single particle states φ̃

(±)
α (~r) =

exp[±i~a2 · ~̂P]φα(~r) = φα(~r± ~a
2) . The one-body (kinetic) kernel term reads:

T (~a) =
〈

Ψ̃
(−)
∣∣∣ t̂
∣∣∣Ψ̃(+)

〉
=

1
2

N(~a) ∑
αβ

〈
φ̃
(−)
α | t̃ |φ̃

(+)
β

〉
(B−1)βα (2.8)

The potential kernel is written as a sum, V (~a) =VD(~a)+VE(~a) where,

VD(~a) =
1
2

N(~a) ∑
αβγδ

〈
φ̃
(−)
α φ̃

(−)
β
|V̂ |φ̃ (+)

γ φ̃
(+)
δ

〉
(B−1)γα(B−1)δβ (2.9)

and:
VE(~a) =−

1
2

N(~a) ∑
αβγδ

〈
φ̃
(−)
α φ̃

(−)
β
|V̂ |φ̃ (+)

γ φ̃
(+)
δ

〉
(B−1)γβ (B

−1)δα . (2.10)
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t̂ and V̂ are given in equations (2.4) and (2.5) and N(~a) = det
{

Bαβ

}
is the overlap kernel. The

details of the calculation of the above kernels for single-particle Dirac functions were presented
in previous publications [1],[4]. The above results can be substituted in Eq. (2.7) to obtain the
total energy. In our fits, the translationally-invariant charge radius has also been used. From the
center-of-mass coordinate definition,~rCM = 1

A ∑
A
i=1~ri , the projected charge radius is given by:

R2
c =

1
Z 〈Ψ|P~p=0 |Ψ〉

〈Ψ|
Z

∑
i=1

(~ri−~rCM)2P~p=0 |Ψ〉 . (2.11)

Finally, for further applications, we define the translationally-invariant nuclear many-body charge
form factor by [5]:

F(q) =
fp(q2)

〈Ψ|P~p=0 |Ψ〉
〈Ψ|

Z

∑
i=1

exp(i~q.(~ri−~RCM))P~p=0 |Ψ〉 , (2.12)

where ~q is the momentum transfer and fp is the proton electric form factor. This can be compared
to the expression:

F(q) =
1
Z

fp(q2) fCM(q2)〈Ψ|
Z

∑
i=1

exp(i~q.(~ri)) |Ψ〉 , (2.13)

with the usual Tassie center-of-mass correction [6] factor, fCM.

3. Results and discussion

In table 1 we show, for each meson, the values of the parameters after(a) and before(b) the
fitting, including our CM correction. First of all we have compared basic properties of symmetric
nuclear matter and have found respectively, 25.7MeV and 32.7MeV for the symmetry energy and
241.0MeV and 244.4MeV for the nuclear compressibility, before and after our re-parametrization.
For finite nuclei, our main results are shown in table 2. Besides the binding energy and root mean
square charge radius before and after the refitting, we display the center-of-mass energy calculated
using the projection procedure presented above and two other commonly used approximate pre-
scriptions: the mean value <p2>

2M (where M is the nucleus total mass and the mean value is taken
within the Hartree solution), which we call here the Hartree approximation and the well known
Harmonic correction. It is worthwhile to note that the 4He nucleus was not included in our fitting.

Although the parameter values show very tiny modifications, these modifications can have
a great impact on the values of observables, due to the fact that we now have translationally-
invariant wave functions. As a simple example we have calculated the charge form factor for
the 4He nucleus, using equations (2.12) and (2.13). The results are presented in figure (1). As
discussed elsewhere [8], valuable information for halos and skins of light nuclei can be obtained
from elastic electron scattering, particularly close to and beyond the first diffraction minima of the
cross section, where explicit center-of-mass corrections can play an important role.
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Table 1: Parameters for the DDH model before (b) and after (a) the re-fitting procedure. We take the values
from [7] before the fitting.

i mi(MeV) Γi(ρ0) ai bi ci di

σb 550 10.72854 1.36547 0.22606 0.40970 0.90199
σa 550 10.72585 1.37380 0.22288 0.40953 0.90190
ωb 783 13.29015 1.40249 0.17258 0.34429 0.98396
ωa 783 13.28819 1.40334 0.17137 0.34296 0.98400
ρb 763 11.7270 0.095268 2.1710 0.053360 17.84310
ρa 763 12.76802 0.17424 1.61884 0.049148 17.80109
δb 980 7.58963 0.01984 3.47320 -0.09080 -9.81100
δa 980 7.58355 0.01992 3.74086 -0.090789 -9.79701

0 3 6
1 E - 1 5

1 E - 1 3

1 E - 1 1

1 E - 9

1 E - 7

1 E - 5

1 E - 3

0 , 1

q ( f m - 1 )
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Figure 1: Elastic charge form factor for 4He with a full CM calculation (full line) and with approximated
(dashed line) CM corrections.
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Table 2: Charge radius and binding energy of the nuclei included in this work calculated before and after
the refitting procedure. Also shown are the CM corrections in the Hartree and Harmonic approximations
(see text for details). The 4He nucleus was not included in our fit.

Nuclei Model Rc (fm) B(MeV ) Model CM energy (MeV )
before 1.909 -31.082 exact 16.890

He4 after 1.928 -31.103 Hartree 12.574
Exp. 1.676 -28.296 Harmonic 19.371

before 2.641 -126.501 exact 13.264
O16 after 2.675 -128.079 Hartree 10.289

Exp. 2.730 -127.619 Harmonic 12.203
before 3.405 -336.888 exact 10.950

Ca40 after 3.448 -341.031 Hartree 8.340
Exp. 3.485 -342.052 Harmonic 8.991

before 3.450 -417.200 exact 11.357
Ca48 after 3.491 -415.018 Hartree 8.452

Exp. 3.484 -415.990 Harmonic 8.461
before 3.684 -478.588 exact 11.566

Ni56 after 3.740 -481.665 Hartree 8.530
Exp. -483.992 Harmonic 8.037

before 3.857 -591.474 exact 10.135
Ni68 after 3.895 -589.278 Hartree 7.469

Exp. -590.408 Harmonic 7.534
before 4.431 -820.937 exact 10.071

Sn100 after 4.494 -828.274 Hartree 7.231
Exp. -824.794 Harmonic 6.625

before 4.701 -1129.109 exact 9.168
Sn132 after 4.751 -1104.652 Hartree 6.536

Exp. 4.709 -1102.851 Harmonic 6.039
before 5.501 -1666.890 exact 8.597

Pb208 after 5.556 -1642.091 Hartree 5.732
Exp. 5.505 -1636.430 Harmonic 5.190
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