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Type Ia supernovae play an important role in observational cosmology and in various astrophysi-
cal processes. As main producers of iron group elements, they are a key component in the cosmic
cycle of matter. The questions about the nature of the progenitor systems from which these
cosmic explosions arise and of their physical mechanism, however, are not settled. Several possi-
bilities have been suggested in the literature. We discuss recent developments and present multi-
dimensional explosion simulations referring to two different scenarios. Combined with detailed
radiative transfer calculations that predict observables from the models and allow direct compar-
ison with astronomical data, these simulations shed light on the nature of the progenitor systems.
Although the range of observed properties is large enough to accommodate many theoretical ex-
plosion models, it is particularly important to identify the class of objects that constitutes the bulk
of Type Ia supernovae. Even when starting out from systems as diverse as Chandrasekhar-mass
white dwarfs and double white dwarf mergers, there is some degeneracy in the predicted observ-
ables that prevents a straightforward judgement on the validity of the models. We discuss possible
ways to overcome this problem and to discriminate between different scenarios.
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1. Introduction

Apart from their prominent role in observational cosmology [1, 2], Type Ia supernovae (SNe Ia)
are important in many astrophysical processes. One of these is the cosmic cycle of matter. With
the products of explosive nucleosynthesis ejected into the interstellar material, they are the main
contributor to iron group elements in the Universe, but also have some share in the enrichment of
intermediate-mass elements (most importantly, Si to Ca) and may be responsible for about half of
the p-process elements (see contribution of C. Travaglio et al. in this volume and [3]).

With their bright optical display, they are one of the drivers of current surveys searching for
astrophysical transients. Observationally, the class of SNe Ia is well-studied, but it is only partially
understood theoretically. The astronomical classification is according to spectral features. Unlike
other supernovae, SNe Ia do not show hydrogen and helium lines, but a prominent silicon line is
visible around the time of maximum B-band luminosity. Other typical features of SNe Ia spectra
result from intermediate-mass elements (e.g., sulfur) and iron group elements.

2. Physical mechanism of SNe Ia and explosion scenarios

The greatest obstacle of modeling SNe Ia theoretically is their unknown progenitor system.
Although they are associated with thermonuclear explosions of carbon-oxygen white dwarfs [4, 5],
it is unclear what drives the star to ignition.

Setting aside this question for the moment, several conclusions can be drawn from the notion
of thermonuclear combustion in degenerate carbon-oxygen material already. As burning begins
with 12C+12C fusion, a reaction whose reaction rate scales with a high power of temperature,
burning must be confined to a thin front. The internal width of such a combustion front is only of
the order of millimeters to centimeters and thus much smaller than the scales of the white dwarf star
(with a radius of ∼2,000km for a white dwarf close to Chandrasekhar mass). It can therefore be
described as a sharp discontinuity between nuclear fuel and nuclear ash. The conservation laws of
hydrodynamics allow for two distinct modes of propagation for such combustion waves: subsonic
deflagrations and supersonic detonations. In both cases, the composition of the ash (and thus also
the nuclear energy release) depends to first order on the fuel density ahead of the combustion wave.
At the highest densities, as encountered at the center of white dwarfs, nuclear statistical equilibrium
is reached and ultimately iron group elements are produced in the freeze-out from this equilibrium.
At lower densities, burning becomes incomplete and intermediate-mass elements (such as Si, S,
and Ca) are synthesized. At even lower densities, oxygen fusion ceases and only carbon burning
remains active. Below a certain density threshold the combustion extinguishes completely and
the fuel material is left unchanged. This picture agrees with the characteristic spectral features
of SNe Ia and hence, in turn, the spectra of these events can be regarded as prototypical for a
thermonuclear explosion. Starting out burning from predominantly self-conjugate matter (12C and
16O), the most abundant iron group nuclide in the ashes is 56Ni. This explains [6, 7] why SNe Ia
are extremely bright – and stay bright and observable for weeks and months. The radioactive decay
of 56Ni over 56Co to 56Fe releases gamma quanta and positrons which heat the ejecta and give rise
to the emission of radiation predominantly in the optical bands (see also [8]).
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In summary, this gives a convincing picture of how SNe Ia can arise from thermonuclear ex-
plosions of carbon-oxygen white dwarfs, but it leaves open the question of why it would explode
in the first place. Several possibilities have been suggested (see [9] for an overview) and tradition-
ally the progenitors in question are classified into single-degenerate systems, in which the white
dwarf accretes matter from a normal companion star, and double-degenerate systems, in which the
supernova arises from the interaction between two white dwarfs.

There is no one-to-one correspondence between progenitor systems and explosion scenarios.
Whereas white dwarf explosions when approaching the Chandrasekhar mass are usually associ-
ated with the single-degenerate channel, sub-Chandrasekhar mass explosions may arise in single
and double degenerate systems. In double-degenerate systems, of course, the mass of the merged
and exploding object can also exceed the Chandrasekhar mass, thus formally resulting in super-
Chandrasekhar mass explosions [10].

Since the question of the progenitors of SNe Ia is open and, according to observations, there
are different sub-classes of SNe Ia, several scenarios could contribute to the sample. About 70%
of all SNe Ia are normal objects [11] – so which scenario explains these events? For answering
such questions it is important to construct consistent hydrodynamical explosion models and to
compare the observables predicted from them to astronomical data. A possibility for this is a
modeling pipeline that captures the explosion dynamics in two- or three-dimensional simulations
(e.g., [12, 13, 14, 15, 16, 17]) followed by a postprocessing step [18, 19, 20, 21] to recover the
detailed nucleosynthesis of the explosion. In the resulting ejecta structure, radiation transport from
the decay of radioactive species is calculated, allowing to compute synthetic observables that can
then be compared to SN Ia observations. In this approach, several models have been studied. In the
following, two scenarios are discussed that are promising candidates for explaining normal SNe Ia
(see, however, [22, 23, 24] and the contribution of M. Fink et al. in this volume for recent studies
of scenarios not discussed here).

2.1 The Chandrasekhar-mass story

Chandrasekhar-mass explosions have to start out as subsonic deflagrations. Pure detonations
are incompatible with observations as they burn the entire white dwarf at the initial high densities.
This produces almost exclusively iron group elements, which is at odds with the observed spec-
tra. Deflagrations are slow if the flame remains laminar, but buoyancy-driven instabilities wrinkle
the flame on large scales and generate turbulence by secondary shear instabilities (e.g., [25]). If
the burning stays subsonic throughout the explosion, the result reaches only the lower end of the
brightness distribution of normal SN Ia [26]. It is, however, possible to reproduce SN 2002cx-like
objects with asymmetrically ignited pure deflagration models [27].

To reach the range of brightness (and corresponding 56Ni production) of normal SNe Ia, it
is necessary to boost the burning efficiency in late stages of the explosion. A deflagration-to-
detonation transition offers this possibility [28, 29]. Whether or not such transitions can be spon-
taneously initiated in SNe Ia is still not known, but if so, strong turbulent velocity fluctuations are
certainly needed [30, 31]. Three-dimensional simulations of deflagrations in white dwarfs indicate
such strong turbulent velocity fluctuations, even at late stages of the burning [26].

Multi-dimensional delayed detonation simulations [15, 32, 33] produce an ejecta structure that
differs significantly from that of their one-dimensional counterparts. Buoyancy carries the neutron-
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rich iron group nuclei produced at high densities near the center of the white dwarf out to larger
radii. At a later stage, when the star has expanded considerably, deflagration-to-detonation transi-
tions may initiate detonation fronts that burn out large parts of the remaining fuel. Although the
outward burning in the outer layers at lower densities produces mainly intermediate-mass elements
and oxygen, thus producing a chemically stratified structure, the detonation also burns downward
to the center of the white dwarf in funnels and cavities of fuel in between the ash plumes of the
deflagration stage. Near the center, the densities are, in large parts, still high enough for the deto-
nation to produce iron group elements. The temperatures, however, are too low to allow efficient
electron captures. Thus, in multi-dimensional delayed detonation models, the center of the ejecta is
usually dominated by 56Ni, whereas stable iron group nuclei are found at larger radii near the tran-
sition from the iron-group dominated central region of the ejecta to the intermediate-mass elements
at higher velocities. The multi-dimensional representation of the ignition configuration (e.g., [34])
allows for a substantial variation in the brightness of the modeled event [35, 36, 32, 33]. Several
other parameters, however, may also contribute to the variability [37, 38, 39, 40].

Although synthetic observables derived from two-dimensional simulations reproduce the main
characteristics of observed SNe Ia [41] and even – to a reasonable degree – the width-luminosity re-
lation [32] used to calibrate SNe Ia as cosmological distance indicators [42, 43], the Chandrasekhar-
mass model is afflicted with various problems. There are indications that the stable iron-group
elements at high velocities in the ejecta may cause a reddening of the spectra that is in conflict
with the observations [44]. Observations [45] and some population synthesis calculations [46] sug-
gest that there exist too few progenitor systems to explain the observed rate of SNe Ia within the
single-degenerate progenitor scenario. Moreover, the impact of the supernova blast wave on the
companion star should strip off hydrogen-rich material from its surface and mix it into the ejecta
[47, 48, 49, 50]. No observational evidence for this material exists and some model predictions are
even in contradiction to the observations. As the companion star is not destroyed in the interaction
with the supernova, searches for it in historic SN Ia remnants have been carried out [51]. These,
however, did not yield a convincing identification [52]. All this leads to the conclusion that alter-
native models have to be seriously considered. Some support for the single-degenerate progenitor
scenario, however, is provided by the observed interaction of several supernovae with circumstellar
material that possibly results from preceding nova eruptions (e.g., [53, 54, 55]). This has been
interpreted as symbiotic nova progenitors for certain SNe Ia.

2.2 White dwarf mergers

A promising alternative to the Chandrasekhar-mass delayed detonation model is the merger of
two carbon-oxygen white dwarf stars. The inspiral and merger was followed with a modification
[56] of the cosmological smoothed particle hydrodynamics code GADGET. If the stars are massive
enough and do not differ too much in their masses, a carbon detonation is likely to trigger in the
merger phase at the interface between the merging stars [10]. In this merger, the more massive star
is little affected by tidal interaction. Since it has the highest density in its central material, the 56Ni
production and thus the brightness of the event is determined by its mass. For a merger of a 1.1M�
white dwarf with an 0.9M� companion, the predicted brightness and other observables match that
of normal SNe Ia very well [57]. In principle, such violent mergers have the potential to explain
a large part of the SN Ia sample. Their predicted occurrence rates may be close to the observed
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SN Ia rate and also the distribution of brightnesses may match the observations [58]. Their success
in reproducing SN Ia observations is a shift in paradigm. It demonstrates that for a viable model,
the explosion of the white dwarf is not necessarily bound to the Chandrasekhar mass. Moreover, the
merger model removes in a natural way the complications that arise from the missing observational
identification of a companion star in the single-degenerate model.

3. SN 2011fe

SN 2011fe is the closest Type Ia supernova observed in the last 25 years. It was detected
extremely early [4], which allowed to convincingly identify the exploding object as a white dwarf
[4, 5]. Archival data [59, 60] and observations in the UV [61] and radio [62, 63] bands put strong
constraints on a non-degenerate companion star.

A comparison with simulations and predicted observables of a delayed detonation in a Chandra-
sekhar-mass white dwarf and a violent merger (both reaching the brightness of SN 2011fe) showed
that it is difficult to give preference to one of these models based on optical observations near peak
luminosity [44]. To break the degeneracy, other observations are required.

The nucleosynthesis in the two scenarios proceeds under very different conditions. In the de-
layed detonation Chandrasekhar-mass model, iron group elements are produced at high densities
and due to normal freeze-out from nuclear statistical equilibrium. In contrast, in the merger model,
densities are lower and thus incomplete Si burning and alpha-rich freeze-out from nuclear statistical
equilibrium produce iron group elements. This leads to different abundances of long-lived radioac-
tive nuclides (in particular, 57Co and 55Fe), which, by leptonic decay, are predicted to dominate the
light curve after ∼900 days. Thus, late light curves are sensitive to the iron group nucleosynthesis
[64] and this may be a way of discriminating between explosion models [44]. Other possibilities
include observations in X-rays [65] or gamma rays (e.g., [66]).

4. Summary

Early-time observations of SN 2011fe gave strong support for associating Type Ia supernovae
to explosions of white dwarf stars. As the significance of this class of supernovae for astrophysics
is far-reaching, ranging from observational cosmology (see, e.g., [67] for a recent study) to galactic
chemical evolution, a deeper theoretical understanding is called for. This is complicated by the
lack of reliable initial conditions for explosion models: the nature of the progenitor system is
observationally not yet established. Two explosion scenarios that arise from different possibilities
and that hold promise for explaining normal SNe Ia have been presented: delayed detonations in
Chandrasekhar-mass white dwarfs and violent mergers of white dwarfs. At the moment, however,
it is hard to distinguish them on the basis of optical observables near peak brightness. Alternatives
that are more sensitive to details of the isotopic composition of the ejecta have been discussed.

5. Questions from the audience

Q. Peng: “How do you think whether SN Ia may be taken as a standard candle?”
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Answer: A calibration is certainly necessary to use them as distance indicators. The relations
that are currently used are purely empirical but nonetheless very successful. With improved
modeling, we hope to be able to deliver a sound theoretical basis for the use of SNe Ia as
cosmic distance indicators.

A. Heger: “Would the scenario of a Ia delayed by rotation (spin-up-spin-down) be consistent with
the non-observation of the companion star?”

Answer: This model is constructed to resolve the problem of the missing companion star
and leaves behind only the core of a giant. Stripping off large amounts of material from it
is hardly possible. Whether or not it should be observable as a peculiar star in the center of
the remnant depends on its thermal evolution after the supernova impact which is difficult to
model reliably.

H. Stoecker: “Suggestion: drop the ‘perhaps’ on your concluding transparency.”

Answer: This referred to a cautious formulation in the assessment of progenitor channels
for SNe Ia. It was stated that ‘perhaps’ there are not enough progenitor systems for the
single-degenerate channel to explain the rate of SNe Ia. This is still controversial. Since
modeling the progenitor system is a challenging problem of binary stellar evolution and
since population synthesis calculations have many uncertainties, definite conclusions can
unfortunately not be drawn yet.

L. Nittler: “What happens if two O-Ne white dwarfs merge?”

Answer: This is an interesting problem. From accretion-induced collapse simulations of
the 1990s it seems likely that such a merger could lead to a gravitational collapse towards
a neutron star rather than a thermonuclear explosion. Detonations in O-Ne white dwarf
matter, however, may result in the opposite. Thus it is worthwhile exploring whether such
detonations can be triggered in O-Ne white dwarf mergers.

B. Schmidt: “One way to overcome problems with using a degenerate scenario would be to have
explosion delayed by a Gyr due to rotation of WD. What are the effects of a rapidly rotating
> 1.38M� WD on explosions?”

Answer: A rapid differential rotation (which is required to increase the mass of the white
dwarf significantly) leads to problems in the delayed detonation scenario. Buoyancy insta-
bilities in the deflagration phase are suppressed in the equatorial direction due to angular
momentum conservation. Therefore, the deflagration is not very efficient in pre-expanding
the white dwarf before the detonation triggers. This inevitably leads to very bright events
that in their predicted observables are inconsistent with normal SNe Ia. A rigid rotation,
however, does probably not affect the explosion very much, but this has yet to be confirmed
in simulations.
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