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We report on the status of two variational studies of the nuclear equation of state (EOS). One
is the study of the variational method with an explicit energy functional (EEF). We have been
studying the EEF with two-body central and tensor forces, and, in this paper, we extend the EEF
to take into account the state-independent three-body force. The calculated energy of neutron
matter with the two-body v6’ potential and the repulsive part of the UIX potential is close to that
with the Monte Carlo method using the full UIX. The maximum mass of the neutron star with this
EOS is about 2.5M⊙. The other study is a construction of a new nuclear EOS table for supernova
numerical simulations that is based on the cluster variational method. Starting from the nuclear
Hamiltonian with the AV18 two-body force and the UIX three-body force, the EOS of uniform
hot asymmetric nuclear matter is calculated using the method of Schmidt and Pandharipande. For
non-uniform nuclear matter, the free energy of a Wigner-Seitz cell is calculated in the Thomas-
Fermi approximation. At zero temperature, a reasonable phase diagram is obtained.
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1. Introduction

The variational many-body theory is a powerful tool for obtaining a reliable nuclear equation
of state (EOS) that governs the structure and evolution of neutron stars. We have been studying a
new type of variational method for calculating the energies per nucleon, E/N, of infinite nuclear
matter at zero temperature starting from the realistic nuclear forces [1, 2]. In this method, we
construct an explicit energy functional (EEF) that expresses E/N as a functional of variational
functions. After obtaining an appropriate energy functional, we can derive the Euler-Lagrange
equations and calculate the minimized energy by solving them.

In recent years, we refined EEF with the two-body nuclear force consisting of the central and
tensor components. Furthermore, we are extending EEF so that it considers the nuclear three-body
force (TBF), which plays an important role in the nuclear EOS. In the first part of this paper, we
report this extension of the EEF.

We have also been constructing a new nuclear EOS for core-collapse supernova (SN) hydro-
dynamic simulations based on the cluster variational method, starting from the realistic nuclear
forces [3, 4]. Since the SN-EOSs constructed so far have been based on particular nuclear models,
the SN-EOS derived directly from nuclear forces is valuable for studies of SNe and other astro-
physical phenomena related to high-density matter. In the latter part of this paper, we report the
current status of our project of constructing this SN-EOS.

2. Explicit Energy Functional for Neutron Matter

In this section, we propose the following energy expression of infinite neutron matter in which
two neutrons interact through the v6’ two-body nuclear potential including the central potential
VCs(r) (s is the total spin of two neutrons) and the tensor potential VT(r):

E2
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3
5

EF +2πρ
∫ ∞

0
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[Scn(k)+2SF(k)−3] [Scn(k)−SF(k)]

2

Scn(k)/SF(k)
k4dk+

Eo

N
. (2.1)

On the right-hand side of Eq. (2.1), EF is the Fermi energy, ρ is the neutron number density, m is
the mass of a neutron, and Fs(r) and FT(r) are the radial and tensor distribution functions, defined
as

Fs(r) = Ω2 ∑
spin

∫
Ψ†(x1,x2, ...,xN)Ps12Ψ(x1,x2, ...,xN)dr3dr4...drN , (2.2)

FT(r) = Ω2 ∑
spin

∫
Ψ†(x1,x2, ...,xN)ST12Ψ(x1,x2, ...,xN)dr3dr4...drN . (2.3)

∗Speaker.
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Here, Ω is the volume of the system, Ψ is the wave function, and Psi j and STi j are the spin-projection
operator and tensor operator operating onto an (i, j) neutron pair, respectively. FCs(r) and gT(r)
in Eq. (2.1) are auxiliary functions defined with Fs(r) and FT(r). Explicit definitions of these
functions are given in Ref. [2]. Structure functions Scn(k) are defined as

Sc1(k) =
1
N

⟨∣∣ N

∑
i=1

exp [ik · ri]
∣∣2⟩= 1+S1(k)+S0(k)≥ 0, (2.4)

Sc2(k) =
1

Nk2

⟨∣∣ N

∑
i=1

(σi ·k)exp [ik · ri]
∣∣2⟩= 1+

S1(k)
3

−S0(k)−
ST(k)

3
≥ 0, (2.5)

Sc3(k) =
1

2Nk2

⟨∣∣ N

∑
i=1

(σi ×k)exp [ik · ri]
∣∣2⟩= 1+

S1(k)
3

−S0(k)+
ST(k)

6
≥ 0, (2.6)

with

Ss(k) = 4πρ
∫ ∞

0
[Fs(r)−Fs(∞)] j0(kr)r2dr, (2.7)

ST(k) = 4πρ
∫ ∞

0
FT(r) j2(kr)r2dr. (2.8)

FFs(r) and SF(k) in Eq. (2.1) are Fs(r) and Scn(k) in the case of the degenerate Fermi gas, respec-
tively. The last term on the right-hand side of Eq. (2.1), Eo/N, is also expressed with Fs(r) and
FT(r) explicitly, although we do not show it here because it is a rather lengthy expression [5].

In Eq. (2.1), E2/N is expressed as an explicit functional of Fs(r) and FT(r) (more practically,
FCs(r) and gT(r)): Especially, the potential energy is expressed exactly, whereas the kinetic energy
is expressed approximately in this EEF. When we assume the Jastrow wave function

Ψ = Sym

[
∏
i> j

fi j

]
Φ, (2.9)

with Φ being the Fermi-gas wave function, we can cluster-expand the expectation value of the
Hamiltonian. Then, we confirm that this energy expression appropriately includes the lowest-order
two-body-cluster terms, the three-body cluster terms that are the lowest order in the correlations
( fi j −1), and a part of the higher-order cluster terms. Furthermore, EEF automatically guarantees
the non-negativeness of Scn(k) (n = 1,2,3) shown in Eqs. (2.4)∼(2.6).

In this section, we employ the state-independent repulsive part of the UIX potential, V (r1,r2,r3),
as the three-body nuclear force, and then, the three-body energy E3/N is

E3

N
=

ρ2

6

∫
F(r1,r2,r3)V (r1,r2,r3)dr12dr23. (2.10)

Here, we employ an extended Kirkwood’s assumption for the three-body distribution function
F(r1,r2,r3) as follows:

F(r1,r2,r3) = F(r12)F(r23)F(r31)
FF(r1,r2,r3)

FF(r12)FF(r23)FF(r31)
, (2.11)

where F(r) = F1(r) +F0(r), and the functions with the subscript F are those in the case of the
Fermi gas. Then, E/N = E2/N +E3/N is minimized with respect to FCs(r) and gT(r) by solving
the Euler-Lagrange equations for them.
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Figure 1: Left: Energy per neutron E/N of neutron matter with the v6’ two-body potential and the repul-
sive part of the UIX three-body potential calculated by EEF. Also shown are those obtained by AFDMC
and FHNC with the full UIX potential [6], as well as E2/N with the v6’ potential obtained by EEF and
AFDMC [7]. Right: Neutron star masses as a function of the central mass density ρmc with the present EOS
of pure neutron matter.

The left panel in Fig. 1 shows E/N for neutron matter with the v6’ two-body potential and the
repulsive part of the UIX three-body potential. Also shown are the results obtained by the Auxiliary
Field Diffusion Monte Calro (AFDMC) and the Fermi Hypernetted Chain (FHNC) methods [6]. It
is seen that E/N with the EEF is close to those obtained by AFDMC and FHNC. It should be noted
that, in the latter two cases, the 2π-exchange part of the UIX potential is also taken into account.
The closeness of our results to those obtained by AFDMC and FHNC may imply that the repulsive
part of the UIX predominates over the 2π-exchange part in normal neutron matter. In this figure,
in addition, we compare E2/N without TBF calculated by the EEF and AFDMC [7]: They are also
close to each other. Further detail on this is given in Ref. [5], including in the case of symmetric
nuclear matter. Since the numerical calculation of E/N by the EEF is much easier than the Monte
Carlo calculation, we can calculate E/N at densities higher than those given by AFDMC. In fact,
with use of our EOS of pure neutron matter, we can see the maximum mass of the neutron star to
be about 2.5 M⊙, as shown in the right panel of Fig. 1.

As the next step of the extension of EEF, we plan to take into account the spin-orbit compo-
nents of the two-body nuclear potential.

3. Nuclear EOS for Supernova Simulations based on the Cluster Variational
Method

As an application of the cluster variational method (CVM) to astrophysical phenomena, we are
now constructing a new nuclear EOS for SN numerical simulations based on CVM. Since the SN-
EOS must cover an extremely wide range of baryon density nB, temperature T and proton fraction
Yp, we have to treat non-uniform matter as well as uniform nuclear matter. In this project, therefore,
we calculate the free energy for uniform matter with CVM at finite temperatures proposed by
Schmidt and Pandharipande (SP) [8], and we treat the non-uniform matter in the Thomas-Fermi
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(TF) approximation by following a route similar to that of Shen et al. [9]. In this section, we report
the current status of this project.

For uniform nuclear matter, we start from the nuclear Hamiltonian, which consists of the
AV18 two-body potential including the central, tensor, spin-orbit and quadratic-angular-momentum
terms, and the UIX three-body nuclear potential. Then, the expectation value of the two-body
Hamiltonian H2 with the Jastrow wave function is evaluated in the two-body cluster approxima-
tion. Here, we impose the extended Mayer’s condition and healing-distance condition, so that the
obtained two-body energy per nucleon, E2/N, is close to that obtained with the FHNC calculation
by Akmal et al. [10] (APR). Furthermore, we take into account the three-body energy E3/N by
modifying the expectation value of the three-body Hamiltonian with the Fermi-gas wave function
so that the total energy E/N = E2/N +E3/N reproduces the empirical saturation data with high
precision [3, 4].

At finite temperatures, we follow the method of SP for calculating the free energy per nucleon,
F/N. In this method, F/N is expressed with averaged occupation probabilities of the single-
particle states of nucleons, and those probabilities are parameterized by the effective masses m∗

i (i=
p,n) of proton and neutron, respectively. Then, F/N is minimized with respect to m∗

i . The obtained
F/N is close to the FHNC result that is an extension of E/N by APR to finite temperatures [11]. It
is noted that the FHNC is applicable only to neutron matter and symmetric nuclear matter, whereas
the present CVM is applicable to nuclear matter for any proton fractions. Therefore, the present
method is suitable for construction of the SN-EOS.

For non-uniform nuclear matter, we employ the TF approximation used by Shen et al. [9]. In
the Wigner-Seitz (WS) approximation, we express the free energy of a WS cell as follows:

F =
∫

cell
f (np(r),nn(r))dr+F0

∫
cell

|∇n(r)|2dr+
e2

2

∫ ∫
cell

[
np(r)−ne

][
np(r′)−ne

]
|r− r′|

drdr′+∆Ec

(3.1)
Here, f is the free energy density of uniform matter calculated with F/N obtained above. The
number densities of protons and neutrons ni(r)(i = p,n) are parameterized as

ni(r) =

{(
nin

i −nout
i
)[

1− (r/Ri)
ti
]3
+nout

i (r ≤ Ri)

nout
i (Ri ≤ r ≤ Rcell).

(3.2)

In Eq. (3.1), n(r) = np(r)+nn(r), and F0 is chosen to be 68.00 MeVfm5 so that the TF calculation
reproduces gross features (masses and radii) of isolated atomic nuclei [4]. Electrons are assumed
to be distributed uniformly in the WS cell, with the number density being ne. The last term ∆Ec in
Eq. (3.1) is the correction to the Coulomb energy due to the bcc lattice structure. Then, at a given
set of nB, Yp and T , the averaged free energy density in the WS cell is minimized with respect to
the parameters in Eq. (3.2).

By using the TF calculation mentioned above, we constructed the phase diagram of nuclear
matter at zero temperature, as shown in Fig. 2. It is seen that, as nB decreases, non-uniform matter
distribution becomes favorable: The critical density between uniform and non-uniform phases is
about 1014.23g/cm3, which is slightly higher than in the case of the Shen-EOS (1014.2g/cm3). At
low densities with Yp & 0.3, nucleons are bound together to be atomic nuclei. As Yp decreases, the
number of neutrons becomes much larger than that of protons, and then neutrons drip out of the
nuclei; in this phase, the nuclei and dripped neutrons coexist.
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Figure 2: Phase diagram by the present EOS at zero temperature.

We are currently calculating the free energy of non-uniform nuclear matter at finite tempera-
tures with the aim of creating a complete SN-EOS table. It is also important to treat light elements
for realistic SN-EOS. As the first step, we are going to include α particles in our EOS, following
the method of Shen et al. [9].
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