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we perform finite size scaling studies for various quantities, for example, susceptibility, kurtosis
and Challa-Landau-Binder cumulant. At the parameter (β = 1.60, κ = 0.1371, csw = 1.9655
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simulation, we observe that the transition is consistent with being of first order.
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1. Introduction

As is well known, the 4-flavor QCD is a good testing ground with finite temperature and
chemical potential before studying the physically more relevant case of the 3-flavor theory. One of
the physical reason1 for this is that the phase diagram of the former theory is expected to have a
first-order phase transition line as shown in Fig.1. It is empirically known that the first-order phase
transition persists even for relatively large quark masses before turning into a crossover. Therefore
one should be able to detect the transition line with a reasonable computational cost and learn the
physical characteristics of the transition. The Kentucky group [4] studied the phase structure of
the 4-flavor theory using the canonical approach with Wilson-type fermions. They observed an S-
shape structure in the chemical potential vs. quark number plot which they took to be an indication
of a first-order phase transition. The study was made only for single lattice volume 63×4, however,
so this is not a conclusive statement.

Our main purpose here is to carry out a finite size scaling study for the 4-flavor QCD with finite
chemical potential and to learn how we can quantitatively decide the order of transition within the
grand canonical approach. In the 3-flavor theory, especially for the physical spectrum of the up
,down and strange quarks, it is expected that the transition is weak, being a crossover at zero
chemical potential and turning into a first-order one with an increasing chemical potential, and
it would be hard to decide the order of transition. Since the transition in 4-flavor theory is also
expected to be weak for heavy quark masses, we should be able to gain useful experience before
tackling a more difficult 3-flavor theory.

2. Simulation setup

We use the grand canonical approach. The partition function is given by

ZQCD(µ) =
∫

[dU ]e−SG [detD(µ)]4. (2.1)

We employ the Wilson-clover fermion action setting the number of flavors to be four. The reason
why we adopt the Wilson type fermions is that in future we want to smoothly move to the 3-

Figure 1: An expected phase diagram for 4-flavor QCD.

1Another reason is the practical one that 4-flavor theory is suited for staggered fermions. New ideas to attack finite
density QCD, for example [1, 2, 3], were firstly examined in this theory.
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flavor case. In order to overcome the complex Boltzmann factor, we employ the phase-reweighting
method. Our approach may seem too straightforward since the phase-reweighting is usually used
to explain how the sign problem appears and why it is so difficult to solve. However, in [5], we
learned that to some extent the phase can be controlled by increasing the temporal lattice size while
keeping the other parameters fixed. Therefore there may be a chance that this method provides
useful information.

In the actual simulations we generate configurations by the phase-quenched partition function
with µ 6= 0

Z||(µ) =
∫

[dU ]e−SG |detD(µ)|4, (2.2)

where the absolute value of the determinant (detD = |detD|eiθ ) is taken into the Boltzmann weight.
Then after measuring observables and correcting the phase factor, we obtain the target results.

〈O〉 =
〈Oei4θ 〉||
〈ei4θ 〉||

. (2.3)

In the present work, we do not employ any parameter reweighting such as the β -reweighting or
µ-reweighting.

A key point in this kind of calculation is how to obtain the phase. We use the reduction
technique proposed in Ref.[6] and obtain the phase as well as quark number exactly, that is, we
compute them without introducing any systematic errors. Actually, computing the phase is the hot
spot of the calculation, and using GPU helps us to accumulate enough statistics. Details of the
calculation will be given in a future publication.

The lattice action which we use is the combination of Wilson-clover fermion action and
Iwasaki gauge action. The parameters are the same as those of the Kentucky group [4], β = 1.6,
κ = 0.1371, csw = 1.9655 and NT = 4. This parameter set corresponds to a = 0.33fm, mπ =
830MeV and T = 150MeV. In contrast to the canonical approach by the Kentucky group, since we
are using the grand canonical approach, the control parameter for quark number is now the chemi-
cal potential. We cover the range aµ = 0.1−0.35 in our simulation. Readers may wonder that the
phase-reweighting method breaks down due to a charged pion condensate. Since the condensate
is expected to start from the value aµc(T = 0) = amπ/2 = 0.7, however, we do not need to worry
about it. To carry out finite size scaling analyses, we chose 4 spatial volumes, 63, 62×8, 6×82 and
83, while the temporal lattice size is fixed at NT = 4.

3. Simulation results

In Fig.2 we show the phase-quenched average of the reweighting factor as a function of aµ .
For larger volume and µ , the average reweighting factor tends closer to zero, so the sign problem is
becoming more serious as expected. However, since the reweighting factor remains non-vanishing
beyond statistical errors, the phase-quenched average is under control for the lattice volumes and
the parameter sets used in the present simulations.

An interesting observation is that there is a local minimum around aµ = 0.2. We expect this to
be the region of transition, which can be understood as follows. Remembering the definition of the
reweighting factor 〈ei4θ 〉|| = ZQCD/Z||, we observe that a zero of the average reweighting factor
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Figure 2: The phase-reweighting factor with Nf = 4 as a function of the chemical potential (the baryon
chemical potential in temperature unit is shown in the upper x-axis).

is related with a zero of the QCD partition function, which is a transition point of the theory. Of
course, we do not expect a real phase transition but only a remnant for finite volumes, and hence no
actual zeros for the real parameter space but just a remnant, such as a minimum. The dip in Fig.2
may be considered to be such a remnant, in which case the parameter region around aµ = 0.2 is
expected to contain the transition point.

Next, let us see the susceptibility of quark number shown in the left panel in Fig.3. Here we
observe a clear volume dependence and the peak grows for larger volume. Therefore it is likely
that there is a phase transition. The next question is what is the order of the phase transition. To
answer this question, let us see the volume dependence of the peak as shown in the right panel
in Fig.3. We observe a linear volume dependence. Other physical quantities including the gauge
action also shows a similar behavior. The volume dependence of the susceptibilities is consistent
with a first-order phase transition.
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Figure 3: Susceptibility of quark number as function of aµ (Left) and the volume scaling of peak height of
the susceptibility (Right). The curves in the right figure is a linear fit of the volume α +βV where α and β
are fitting parameter. Note that in the right figure the value is evaluated at aµ = 0.205 which is nearly a peak
position.
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Figure 4: Kurtosis of quark number as function of aµ .

The kurtosis is defined from the fourth and second derivatives by

Kq =
(lnZQCD(µ))′′′′

((lnZQCD(µ))′′)2 . (3.1)

Note that this quantity is slightly different from the 4-th order Binder cumulant B4 = K + 3. The
results are plotted in Fig.4 showing a negative value and a minimum around aµ = 0.2. In the
thermodynamic limit the kurtosis is expected to behave as

lim
V→∞

Kq = −2 : 1st order (3.2)

−2 < lim
V→∞

Kq < 0 : 2nd order (3.3)

lim
V→∞

Kq = 0 : cross over (3.4)

As you can see from the figure the volume dependence of the minimum is very small and further-
more, the minimum value is far from −2. Therefore, it is hard to conclude that the teansition is of
first order from kurtosis. We discuss the discrepancy in the volume dependence of the susceptibility
and the kurtosis in the next section.

In Fig.5, we show the Challa-Landau-Binder (CLB) cumulant [7, 8] of the gauge action SG

which is defined as

UG = 1−
〈S4

G〉
3〈S2

G〉2 . (3.5)

When the minimum of the CLB cumulant in the thermodynamic limit is 2/3, the transition is a
crossover, while for other values it is of first order. The right panel in Fig.5 shows the volume de-
pendence of the minimum. The data is beautifully on the 1/V scaling line, and the thermodynamic
limit value is different from 2/3. Therefore the CLB cumulant analysis indicates that the transition
is consistent with being of first order. The kurtosis and the CLB cumulant show quite different
behaviors.

4. Distribution argument

We now argue that the discrepancy in the scaling behavior observed above can be understood
by a phenomenological distribution argument. At a first-order transition point, the distribution of
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Figure 5: CLB cumulant of gauge action as function of aµ (Left) and the volume scaling of minimum of
the CLB cumulant (Right). The curves in the right figure is a linear fit γ + δ/V where γ and δ are fitting
parameter.

an observable X can be approximately described by a double peak gaussian form given by

P(x) ∝ e−
(x−X−)2

2c/V + e−
(x−X+)2

2c/V . (4.1)

One can then calculate the susceptibility, the kurtosis and the CLB cumulant in terms of the param-
eter c, gap ∆ = (X+−X−)/2 and average X = (X+ +X−)/2, and find

χX = V 〈(x−〈x〉)2〉 = V ∆2 + c, (4.2)

KX =
〈(x−〈x〉)4〉
〈(x−〈x〉)2〉2 −3 =

−2
(1+ c

∆2
1
V )2

= −2
[

1− 2c
∆2

1
V

+O(V−2)
]
, (4.3)

UX = 1− 1
3
〈x4〉
〈x2〉2 =

2
3

X4 +∆4

(X2 +∆2)2
1(

1+ c
X2+∆2

1
V

)2

=
2
3

X4 +∆4

(X2 +∆2)2

[
1− 2c

X2 +∆2
1
V

+O(V−2)
]
, (4.4)

where 〈 f (x)〉 = k
∫ ∞
−∞ dx f (x)P(x) with a normalization constant k. From the above equations, we

read that the peak of the susceptibility increases in proportional to the volume and the minimum of
the kurtosis and the CLB cumulant have 1/V scaling as expected. Note that such volume depen-
dences originate from a non-zero gap ∆ 6= 0 and c 6= 0 which in turn is nothing but the two-state
signal of the first-order phase transition. In the last section, we observed that the peak of the sus-
ceptibility shows a linear volume dependence. Therefore we can say that ∆ is non-zero and this is
consistent with a first-order phase transition.

Although the kurtosis and the CLB cumulant have a similar volume scaling behavior in the
above equations, there is an important practical difference between them. In the coefficient of 1/V ,
there is X in the latter but not in the former. Depending on the size of X , the parameter controlling
the 1/V correction changes. For example, the CLB cumulant of the gauge action analyzed in the
last section showed a nice scaling behavior. This is because the average value is much larger than
the gap X � ∆ and the fluctuation is small c � X2. The histogram of the gauge action on the
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phase quenched configuration supports these relations. On the other hand, the kurtosis showed a
bad scaling behavior. The main reason for this is as follows. From the fitting the susceptibility we
find that c ≈ V ∆2. This suggests that the overlap of the two peaks is very large, which is roughly
confirmed in the histogram on the phase quenched configurations. In such a small volume, the 1/V
expansion for kurtosis in eq.(4.3) is not valid. Therefore the kurtosis does not have a good scaling
behavior in contrast to the CLB cumulant.

5. Summary

We have observed that the susceptibility and the CLB cumulant have a nice scaling behavior,
while the kurtosis does not. We have argued that such a discrepancy is understood by the phe-
nomenological double peak distribution analysis. This argument shows that even if the overlap of
the two peaks are large (which often happens in a small volume setup), the CLB cumulant and the
susceptibility are still good indicators for the determination of the order of phase transition, espe-
cially for the CLB cumulant under the condition that the average of the observable is larger than
the gap of two peaks . The presence of the average in the CLB cumulant makes 1/V scaling clearly
visible. Overall, we conclude that at this parameter set, the transition is consistent with being of
first order.

In order to check the above conclusion, we have performed further analyses. For example,
see Ref. [9] for an analysis of partition function zeros. Furthermore, a preliminary analysis for the
3-flavor theory is presented in Ref. [10].
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