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1. Introduction

Understanding how the non-trivial structure of hadrons results from QCD has been one of the
fundamental goals of Lattice QCD since its inception, but it must be said that this is no easy task.
Over the past thirty years, a great deal of progress has been made in exploring the light, charmed
and heavy quark sectors. Almost all of these studies have been limited to studying only the ground
states in each channel. In recent years there has been increased interest experimentally in nucleon
resonances, and so it is worth asking how we would go about exploring the structure of hadronic
resonances in the context of Lattice QCD.

Over the past decade, numerous techniques have been developed for examining the excited
state spectrum of both baryons and mesons. Of these techniques, the most popular and successful
is the variational approach. The underlying principle of this method is to construct an ideal set of
interpolators, which couple to a single state in the spectrum, from a pre-existing basis of operators.
By isolating individual states, we are able to apply the same techniques used in the extraction of
hadronic properties of the ground state to all eigenstates of the Hamiltonian, providing us with a
mechanism to probe and investigate the excited state structure directly from QCD.

Though we are still along way off from precision calculations, the resulting spectrum is re-
markably similar and as diverse as the observed physical hadron spectrum. Through the variational
approach we have been able to tackle some of the long-standing issues regarding the ordering of
excitations such as the Roper resonance [10] and the Λ(1405) [2]. Furthermore, this approach has
allowed us to explore the QCD spectrum for exotic states that have been proposed, but not yet
observed physically.

Having developed a method for isolation of exited states, naturally the next step is to probe its
structure. In this work we present a prescription for extracting form factors for excited states by
utilising the operators constructed through the variational procedure. We note that similar methods
have been presented in reference [3], for charmonium transitions, and in reference [4], then applied
specifically to B∗ → Bπ transitions in reference [5]. Here we will, for the first time, present matrix
elements for an excited state.

2. Correlation Matrix methods for matrix elements

The underlying principle of the variational approach is to construct an ideal set of interpolators
which couple dominantly to a single state in the spectrum, from a pre-existing basis of operators
{χi(x) | i = 1, . . . ,N }. This can be achieved by constructing a matrix of cross-correlation functions
from which the different superpositions of excited state contributions are linearly combined to
isolate the energy eigenstates. More precisely, due to the discrete nature of the lattice, we can
decompose any two-point function into a discrete sum of energy eigenstates

Gi j(p⃗, t) = ∑
α

e−Eα (p⃗) t

2Eα(p⃗)
Zα

i (p⃗)Zα
j

†(p⃗) , (2.1)

where the parameters Zα
i (p⃗) = ⟨Ω|χi(0) |α, p⟩ are the coupling strengths. By constructing new

operators to be linear combinations

ϕ α(x) = ∑
i

vα
i χi(x); ϕ α †(x) = ∑

j
uα

j χ†
j (x) , (2.2)
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and a suitable choice of coefficients vα
i and uα

j , our interpolators can couple with a single energy
eigenstate

⟨Ω|ϕ β (0) |α, p⟩= δ αβ Zα(p)√
2Eα(p⃗)

. (2.3)

From Eqs. (2.1) and (2.3) we find that the necessary values for vα
i and uα

j are the solutions of the
following generalised eigenvalue equations

vα
i (p⃗)[G(p⃗, t0 +∆t)(G(p⃗, t0))−1]i j = cαvα

j (p⃗) , (2.4)

[(G(p⃗, t0))−1G(p⃗, t0 +∆t)]i juα
j (p⃗) = cαuα

i (p⃗) , (2.5)

where the eigenvalue cα = e−mα ∆t .
It is important to note that both Eqs. (2.4) and (2.5) are evaluated for a given momentum p⃗ and

so the diagonalisation condition is only satisfied when we project with the relevant coefficients as
follows

vα
i (p⃗)Gi j(p⃗, t)uβ

j (p⃗) ∝ δ αβ . (2.6)

Thus the two-point correlation function for the state |α, p⟩ is

Gα(p⃗, t)≡ vα
i (p⃗)Gi j(p⃗, t)uα

j (p⃗) . (2.7)

To understand how we can utilise the variational method in form factor calculations, we
firstly identify the terms present in the three-point correlation function Gµ

i j(p⃗ ′, p⃗; t2, t1). Work-
ing from the operator definition, one can show that we require three terms – the vertex amplitude,
⟨β , p′|Jµ(0) |α, p⟩, and the coupling terms ⟨Ω|χi(0) |β , p′⟩ and ⟨α, p |χ†

j (0) |Ω⟩.

Gµ
i j(p⃗ ′, p⃗; t2, t1) = ∑

α,β

e−Eβ (p⃗ ′)(t2−t1)e−Eα (p⃗)t1

2
√

Eα(p⃗)Eβ (p⃗ ′)
Zβ

i (p⃗ ′)Zα
j

†(p⃗)⟨β , p′ |Jµ(0)|α, p⟩ .

The coupling parameters take the same form as they did in the calculation of two-point function
with two key differences. The inclusion of a current means that the initial and final momenta need
not be the same, and there also exists the possibility that the initial and final energy eigenstates
are not the same. That is, the current can induce a transition between states. With this in mind,
to calculate the transition matrix element for radiative transitions between eigenstates α → α ′, we
require

(Gα→α ′
)µ(p⃗ ′, p⃗; t2, t1) = vα ′

i (p⃗ ′)Gµ
i j(p⃗ ′, p⃗; t2, t1)uα

j (p⃗) , (2.8)

while for matrix elements of the state α ,

(Gα)µ(p⃗ ′, p⃗; t2, t1) = vα
i (p⃗ ′)Gµ

i j(p⃗ ′, p⃗; t2, t1)uα
j (p⃗) . (2.9)

To isolate the matrix element from the three-point function, we construct the ratio in the usual way.
In this work we shall use the ratio defined in reference [6]. For the state α the necessary ratio is,

(Rα)µ(p⃗ ′, p⃗) =

√
(Gα)µ(p⃗ ′, p⃗; t2, t1)(Gα)µ(p⃗, p⃗ ′; t2, t1)

Gα(p⃗, t2)Gα(p⃗ ′, t2)
. (2.10)
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3. Calculation Details

For this calculation we make use of the PACS-CS 2 + 1 flavour dynamical-QCD gauge-field
configurations [7] made available through the ILDG [8]. These configurations are generated using
a non-perturbatively O(a)-improved Wilson-Clover fermion action and Iwasaki gauge-action. The
lattice volume is 323 × 64, with β = 1.90 resulting in a lattice spacing a = 0.0907 fm. Of the five
available quark masses we will only consider form factors for the heaviest herein, with hopping
parameter κud = 0.13700 corresponding to a pion mass of mπ = 0.624 GeV. We consider 350
configurations. Our error analysis is performed using a second-order jackknife method, with the
χ2 per degree of freedom (χ2

dof) obtained via a covariance matrix analysis.
The key to success with the variational approach is to utilise a basis of operators in which

there is diversity in the overlap with various excited states. As there are a limited number of local
bilinear operators for given JPC, a great deal of work has been made by various groups in increasing
the available operators. Here we choose to use fermion source and sink smearing as a method of
extending our operator basis as outlined in [9, 10]. In particular we use n sweeps of gauge invariant
Gaussian smearing in the spatial dimensions only with smearing fraction α = 0.7 [9]. Here we
consider four levels of smearing, these being 16, 35, 100 and 200, allowing for the construction of
up to a 4 × 4 correlation matrix. For the pion our local interpolator is χπ(x) = d̄(x)γ5u(x), and for
the rho meson χ i

ρ(x) = d̄(x)γ iu(x). For the vartiaonal analysis we use t0 = 17 and ∆t = 2 relative
to the source at t = 16. In Fig. 1 we present our results from the variational analysis for the pi and
rho ground states and their first excitations at the three heaviest quark masses. The ground state
masses for the remaining quark masses are also presented.
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Figure 1: Meson spectrum from the PACS-CS configurations. We have performed a correlation
matrix analysis at the three heaviest quark masses and plot the ground-state and first excitation –
pion (0−) (blue), rho meson (1−) (green). The points at the far left correspond to the states in the
PDG summary tables.

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
7
3

CM methods for excited meson FFs in Full QCD Benjamin Owen

To extract the pseudoscalar and vector meson form factors, we follow the prescription outlined
by Hedditch et al. [6]. Here we will simply identify the expressions used to calculate the form
factors from the ratio of Eq. (2.10) and refer the reader to reference [6] for details. For the pion,
only a single form factor is required, which when identified as a Sachs form factor corresponds to
the charge form factor, GC(Q2),

GC(Q2) = 2
√

Eπmπ

Eπ +mπ
R0(p′, p) .

For the rho meson, a further two terms are required due to its non-trivial spin. When expressed
in terms of Sachs form factors, these correspond to the charge form factor, GC(Q2), the magnetic
form factor, GM(Q2), and the quadrupole form factor, GQ(Q2). In this calculation we access these
using the following expressions [6],

GC(Q2) =
2
3

√
Eρmρ

Eρ +mρ

(
R1

0
1 +R2

0
2 +R3

0
3
)
,

GM(Q2) =

√
Eρmρ

px

(
R1

3
3 +R3

3
1
)
,

GQ(Q2) = mρ

√
Eρmρ

p2
x

(
2R1

0
1 −R2

0
2 −R3

0
3
)
.

This analysis is performed upon the ground-states and their first excitation at the heaviest quark
mass using the projected correlation functions obtained through Eqs. (2.7) and (2.9). To provide a
bench mark and allow for comparison with the standard approach, we also perform the calculation
using an ensemble of correlation functions with a given smeared source. In this case we choose 35
sweeps of source smearing, and a point sink as representative of the standard approach.

4. Ground-state Form Factors

In Fig. 2 we present the results for the ground state form factors. The blue-circular data points
correspond to our improved variational method while the red-square data points correspond to the
standard, single correlation function method. In the upper two plots, which correspond to the pion
and rho meson charge form factors respectively, we can see that both methods produce nice clean
signals with distinct plateaus. In both plots the presence of excited state effects after the insertion
of the current is apparent, but the almost step-like behaviour in the case of the variational method
indicates that these effects are significantly smaller. By using operators that are optimised to couple
with the ground-state, near-by excited states have been suppressed resulting in improved ground
state dominance and earlier fit windows. In the case of the pion’s GC, based upon the χ2

dof, the
earliest time slice one can fit would be tS = 30 for the standard approach while in the case of the
variational method one can begin fitting as early as tS = 25. Similar conclusions can be drawn for
the fits of the rho meson GC.

Where our variational approach really pays off is in the more difficult channels of the rho
meson. The improvement exhibited for the rho meson magnetic and quadrupole form factors is
substantial. Using the standard approach for GM, due to an almost linear drift in the result, a
discernible plateau is not observed until atleast 6-7 time slices after the insertion of the current. In
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Figure 2: Comparison of the standard, single correlation function approach (red-square symbols)
with our improved variational approach (blue-circle symbols). Top left is the pion GC, top right
is the rho meson GC, bottom left is the rho meson GM and bottom right is the rho meson GQ. In
all cases we find an early onset of ground state dominance and in the case of the more difficult
magnetic and quadrupole form factors, the quality of the plateau has dramatically improved.

contrast to this, our variational approach provides a rapid onset of the plateau. A distinct plateau is
observed within 2-3 time slices after the point-split current insertion centred at t = 21. This is clear
evidence that through the use of optimised operators obtained from a variational procedure one is
able to systematically reduce the impact of excited state effects. Similar behaviour is observed for
GQ.

5. Excited State Form Factors

The most intriguing aspect of using a variational approach is that it opens up a new realm
of interesting physics. As the excited states exhibit the same quantum numbers as their ground-
state counterparts, the same expressions can be considered using the relevant projected correlation
functions Gα(p, p′) in the analysis. In Fig. 3 we present the worlds first results for the form factors
of an excited state hadron, in this case the first rho meson excitation. We note that similar results are
obtained for the first excitation of the pion. As outlined in reference [6] one can infer rms-charge
radii and magnetic moments for these states from GC(Q2) and GM(Q2) respectively1. In Table 1

1This approach adopts a monopole ansatz for the Q2 dependence of the charge form factor. While the multi-particle
Fock-space component of the excited state certainly give rise to a more interesting Q2 dependence, the ansatz does
provide some insight into the nature of this excited state
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Figure 3: The charge and magnetic form factors for the first excitation of the rho meson (green-
circle symbols). The shaded region is the best fit to the data in the region where there is a clear
signal. The blue-square symbols illustrate the ground-state result for comparison.

we display our results for the ground state and first excitation in each channel. The data indicates
that these excitations are more extended than their ground-state counterparts.

rrms [fm] µ [µN ]

Ground-state 1st excitation Ground-state 1st excitation
π (0−) 0.51±0.01 0.73±0.09 - -
ρ (1−) 0.59±0.01 0.79±0.04 2.09±0.02 2.7±0.3
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