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1. Introduction

This is a talk based on [1]. The action of the 2-d O(3) model in the continuum is defined as

S[~e] =
1

2g2

∫
d2x ∂µ~e ·∂µ~e, (1.1)

where g2 is the coupling and the unit-vector ~e(x) ∈ S2 is the field variable. The 2-d O(3) model
shares many features with QCD: Both have important properties including asymptotic freedom and
a non-perturbatively generated massgap. One can define a topological charge [2]

Q[~e] =
1

8π

∫
d2x εµν~e · (∂µ~e×∂ν~e), (1.2)

which is an integer number and describes how many times the sphere S2 gets covered by~e(x), when
x runs over a periodic space-time. There are instantons, which are field configurations with a non-
zero topological charge Q[~e], which minimize the action S[~e]. Because of the presence of non-trivial
topological sectors we can add the θ -vacuum term iθQ[~e] to the action. Here, we show that the
parameter θ is indeed a relevant parameter in the action, which means it does not get renormalized
non-perturbatively. We will show that at each value of θ there is a different continuum theory.

Haldane showed in the large spin S limit that the low-energy effective field theory of a (1+1)-d
spin chain is the 2-d O(3) model. He further conjectured that integer spin chains correspond to a
vacuum angle θ = 0, while half-integer spin chains correspond to θ = π [3]. This conjecture has
been confirmed numerically for θ = 0 in [4] and within statistical errors also for θ = π [5]. For
spin chains it is well known that for half integer spins the mass gap vanishes [6].

The 2-d O(3) model has been studied analytically by the exact S-matrix theory. For θ = 0, this
theory predicts a mass gap m(θ = 0) = 8

e ΛMS, which is generated non-perturbatively and has been
verified by lattice simulations. Furthermore it is conjectured that the low-energy effective field
theory of the 2-d O(3) model at θ = π is the WZNW model [7]. The exact S-matrix theory even
solves analytically the 2-d O(3) model also in the finite volume and provides a prediction for the
step scaling function [8]. Therefore, it is not necessary to take the thermodynamic limit to compare
analytic and numerical results. The step scaling function σ(s,u0) describes the scaling behavior of
the renormalized coupling u0 = m(L)L in the finite volume with spacial extend L. Here, we will use
different lattice actions to confirm the exact S-matrix results. Besides the standard action, we use a
topological action [9], which constrains the maximal angle between neighboring spins. To reduce
the cut-off effects, we will combine these two actions in the new “constraint action“, which has
also been studied intensively in [10]. In this paper, we also use a variant of a method developed by
Hasenbusch [11, 12] to simulate θ -vacuum effects in the 2-d O(3) model with unprecedented per
mill level precision. For the first time, this numerically confirms the conjectured exact S-matrix of
the 2-d O(3) model at θ = π [13] beyond any reasonable doubt, which also implies that the model
indeed reduces to the WZNW model at low energies.

On the lattice, field configurations with non-zero topological charge that minimize the action
are known as dislocations. When the dislocation action is less than a critical value, a semi-classical
argument suggests that the topological susceptibility χt = 〈Q2〉/V should suffer from an ultra-
violet power-law divergence in the continuum limit [14]. As we will see later, for each value of θ

the dislocation problem does not prevent θ to be physically relevant, which suggests that χt only
diverges logarithmically.
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2. Lattice Setup

2.1 The Lattice Actions

The simplest lattice discretization of the action (1.1) leads us to

Sstandard[~e] =−
1
g2 ∑
〈xy〉

~ex ·~ey, (2.1)

where~ex ∈ S2 is the field variable, which is now defined on every site x on the lattice. Besides this
standard action we also consider the topological action introduced in [9]

Stopological[~e] = ∑
〈xy〉

s(~ex,~ey), s(~ex,~ey) =

{
0 for ~ex ·~ey > cosδ

∞ else
. (2.2)

Here, the maximally allowed angle δ plays the role of the coupling. The topological action only
allows configurations where the angle between the field variables on neighboring sites x and y is
smaller than δ (~ex ·~ey > cosδ ). Otherwise the action is infinite, which means that the corresponding
configurations are not allowed. All allowed configurations have the same action Stopological[~e] =
0. As a consequence, this lattice model does not have the correct classical continuum limit, it
violates the Schwarz inequality between action and topological charge, and it cannot be treated
in perturbation theory. Despite these various deficiencies this action still has the correct quantum
continuum limit [9].

As it will be shown later, the standard action approaches the continuum limit of the step scaling
function from above while the topological action approaches it from below. Therefore we combine
these two actions in order to reduce the cut-off effects. This we do with the an optimized constraint
action

Sconstraint[~e] = ∑
〈xy〉

s′(~ex,~ey), s′(~ex,~ey) =

{
− 1

g2 ~ex ·~ey for ~ex ·~ey > cosδ

∞ else
. (2.3)

Here, g2 is again the coupling, while δ is a fixed parameter that is tuned to a value which minimizes
the cut-off effects. For δ = π this optimized constraint action reduces to the standard action (2.1).
On the other hand, if we send g2→ ∞, we obtain the topological action (2.2).

To implement the topological charge Q[~e] in a discretized form, we triangulate the lattice as
shown in figure 1. Then each triangle 〈xyz〉 gets mapped to an oriented area A〈xyz〉 = 4πq〈xyz〉 on the
sphere S2 defined by~ex, ~ey, and~ez. If we sum up the areas q〈xyz〉 of all triangles, taking in account
their orientation, we obtain the topological charge

Q[~e] = ∑
〈xyz〉

q〈xyz〉. (2.4)

Using this definition, the topological charge is an integer number, as long as we sum over all
triangles in a periodic lattice. The area of one single triangle 〈xyz〉 can be calculated as

Re2πiq〈xyz〉 = 1+~ex ·~ey +~ey ·~ez +~ez ·~ex + i~ex · (~ey×~ez), R≥ 0. (2.5)

As before, we can add the θ -vacuum term iθQ[~e] to the action, where Q[~e] is now the dis-
cretized topological charge.
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Figure 1: Triangulated square lattice: the triangles 〈xyz〉 in the shaded area A(t1, t2) carry the topological
term iθq〈xyz〉.

2.2 Observables

To compare results with the exact S-matrix theory, we calculate the step scaling function
σ(s,u0) [8], where s is a rescaling factor. Starting on a volume with spacial extent L, one ad-
justs the coupling g2 in order to obtain the renormalized coupling u0 = m(L)L, where m(L) is the
inverse of the finite volume correlation length m(L) = 1/ξ (L). Then, one measures the renormal-
ized coupling u1 =m(L′)L′ on the scaled volume with spacial extend L′= s ·L. Setting the rescaling
factor s = 2 means that we measure the quantity

σ(2,u) = 2m(2L)L
∣∣∣
m(L)L=u0

(2.6)

on a volume which has twice the spacial extent L′ = 2L than the original. To measure the finite
volume correlation length ξ (L), we calculate the correlation function

C(t1, t2;θ) =
1

Z(t1, t2;θ)

(
∏

x

∫
S2

d~ex

)
~E(t1) ·~E(t2)× e−S[~e]+iθQ(t1,t2) ∼ e−m(θ ,L)(t2−t1), (2.7)

where Q(t1, t2) is the (in general non-integer) topological charge between time-slice t1 and t2,
m(θ ,L) is the inverse of the finite volume correlation length m(θ ,L) = 1/ξ (θ ,L), ~E(t) is the
average spin in timeslice t and Z(t1, t2;θ) is the partition function

~E(t) =
1

Nx
∑
x
~e(x,t), Z(t1, t2;θ) =

(
∏

x

∫
S2

d~ex

)
exp(−S[~e]+ iθQ(t1, t2)) . (2.8)

To sample Monte Carlo configurations with a positive weight, we need to absorb the phase factor
in the observable. This reweighting is obtained as follows

C(t1, t2;θ) =

〈(
~E(t1) ·~E(t2)

)
exp(iθQ(t1, t2))

〉
θ=0

〈exp(iθQ(t1, t2))〉θ=0
=

C(t1, t2,0)Z(t1, t2,θ)/Z(0)
Z(t1, t2,θ)/Z(0)

. (2.9)

The cut-off behavior of the lattice step scaling function Σ(θ ,2,u0,a/L) is known for θ = 0[15]:

Σ(θ = 0,2,u0,a/L) = σ(θ = 0,2,u0)+
a2

L2

[
B log3(L/a)+C log2(L/a)+ . . .

]
, (2.10)

where B and C are fitting parameters and L/a is the number of lattice points in the spatial direction.
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To obtain high accuracy data, we use an improved estimator first proposed by Hasenbusch [11],
which was further developed in [12]. Instead of measuring the estimator

(
~E(t1) ·~E(t2)

)
eiθQ(t1,t2),

we integrate out a certain rotation symmetry. This can be done by rotating all spins after timeslice
t with a rotation matrix X(t) : ~e(x,t ′) 7−→ X(t)~e(x,t ′) for all t ′ > t. Using open boundary conditions
in the temporal direction, the action S[~e] and the topological charge Q[~e] only change in this time
slice t. For each timeslice t1 < t ≤ t2 we now choose four different rotation matrices X0(t) =
1, X1(t), X2(t), X3(t), which all do not change the action S[~e] (for the construction of Xi(t) see
[12]). So in each timeslice t1 < t ≤ t2, we insert a matrix

X̃(t) = ∑
i

Xi(t) exp(iθQ(t, t +1,Xi (t))) , (2.11)

where Q(t, t +1,Xi(t)) is the topological charge after all the spins~e(x,t ′) for t ′ > t have been rotated
with the rotation matrix Xi(t). With this, we can write improved estimators as(

~E(t1) ·~E(t2)
)

exp(iθQ(t1, t2)) ∼ ~E(t1) X̃(t1 +1) X̃(t1 +2) · · · X̃(t2) ~E(t2) (2.12)

exp(iθQ(t1, t2)) ∼
(
∑

i
eiθQ(t1,t1+1,Xi(t1+1))

)
· · ·
(
∑

i
eiθQ(t2−1,t2,Xi(t2))

)
3. Results

By measuring the step scaling function on different lattice sizes L/a, we can plot the cut-off
behavior of the different lattice actions as it is done in figure 2. The curves for the standard action
and for the topological action are fits of the function (2.10), where σ , A and B are fitting parameters.

For θ = 0 the continuum limit (horizontal line) is predicted by the exact S-matrix theory
to be at σ(0,2,1.0595) = 1.2612103 [16]. As one can see, the standard action approaches this
continuum limit from above, while the topological action approaches the continuum limit from
below. The maximum angle δ of the constraint action is tuned to the continuum value at a lattice
size L/a = 10 and takes an optimal value at cos(δ ) = −0.345. Even for finer lattices the cut-off
effects of the constraint action are remarkably small and only at the per mill level.

At θ = π the exact S-matrix theory again predicts a continuum result (horizontal line) of
σ(π,2,1.0595) = 1.231064 [17]. This result is confirmed by extrapolating the standard action or
the constraint action. For the constraint action, we still use the maximal angle δ , which has been
tuned at θ = 0. Also in this case the cut-off effects of the constraint action are extremely small.

For θ = π/2, we do not have an analytic prediction of the continuum limit and we do not know
whether the function (2.10) is still applicable to describe the cut-off effects. Nevertheless, we fit this
function to the cut-off effects of the standard action, which gives a small χ2/d.o.f. Extrapolating
to the continuum limit agrees with an estimator of the continuum limit for the constraint action
(horizontal line). Again, the constraint action has a maximum angle constraint δ , which has been
tuned at θ = 0, but still shows an extremely good cut-off behavior.

Figure 2 also shows that all continuum limits (at θ = 0,π/2,π) are significantly different,
which means that each value of θ indeed corresponds to a different theory. Hence θ is a relevant
parameter that does not renormalize to 0 or π non-perturbatively, as one might have expected due
to the presence of dislocations. This can also be seen in figure 3, where we plot m(θ ,L)L as a
function of θ , keeping the coupling fixed. For θ = 0, we fix the value to m(0,L)L = 1.0595, at
θ = π one obtains m(π,L)L = 1.048175 [17].
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Figure 2: Cut-off dependence of the step scaling function Σ(θ ,2,u0 = 1.0595,a/L) for three different lattice
actions: the standard action, the topological lattice action of [9], and the optimized constraint action with
cosδ =−0.345, as well as for three different values of θ = 0 (top) and θ = π

2 ,π (bottom). The lines are fits
based on eq. The horizontal lines represent the analytic continuum results for θ = 0 [16] and θ = π [17],
and the fitted continuum value for θ = π

2 .

4. Conclusion

Using an efficient modification of Hasenbusch’s improved estimator allowed us to show that
the θ parameter in the 2-d O(3) model is indeed a relevant parameter and does not get renormalized
non-perturbatively. We found a different continuum limit for each value of θ (here shown for
θ = 0,π/2,π). Dislocations do not spoil this continuum limit even for θ 6= 0. We confirmed the
exact S-matrix conjecture for the step scaling function at θ = π , which also implies that the model
indeed reduces to the WZNW model at low energies.

In the simulations we used different lattice actions. The constraint action combines the stan-
dard action with a topological action. The topological action restricts the maximal angle between
neighboring spins and is thus invariant under small deformations of the field. In the constraint
action this maximal angle is tuned in order to reduce the cut-off effects. Our results show that only
a single tuning is necessary (at L/a = 10, θ = 0) to once and for all fix this maximal angle. Other
lattice sizes or other values of θ have extremely small cut-off effects of the step scaling function
which all lie in the per mill level or beyond.
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Figure 3: The θ -dependent massgap Lm(θ ,L) at Lm(0,L) = 1.0595 using the optimized constraint action
for L = 24a, compared to the analytic result at θ = π [17] (cross).

We are indebted to J. Balog for providing exact values of the step scaling function at θ =

π prior to publication. This work has been supported by the Regione Lombardia and CILEA
Consortium through a LISA 2011 grant, as well as by the Schweizerischer Nationalfonds (SNF).
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