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1. Motivations

When we construct interacting supersymmetric theories on lattice, we must take care of a
Leibniz rule on lattice. A no-go theorem on the rule for an infinite volume system on lattice has
been proved by us [1]. In its proof, there are two important clues, i.e. translational invariance
and locality for an infinite system. The holomorphic function property associated with a lattice
operator can decsribe those both clues. To manipulate the locality in a finite volume system, we
must seek another discrete version of holomorphism which expresses translational invariance and
locality. Corresponding to a certain translational invariant operator, a discrete function instead of
a complex function can be defined and we can describe it as a local operator in the finite volume
system.

There is a puzzling situation between a multi-flavor system and the matrix representation of
an infinite flavor system which matrix product and a commutator difference operator is satisfied
with the Leibniz rule [2]. To the contrary, there is a Leibniz rule no-go theorem on lattice for the
finite flavor case. Cannot we recognize a matrix representaion as inifinite flavor number limit of a
multi-flavor system? In order to solve the problem, we must analyze the finite number case of the
flavor N f and the lattice size N which implies the spatial volume.

2. Definition of a local lattice theory

In this article, we treat a one-dimensional system. The extention to higher dimensions can be
realized by the direct product of higher dimensional coordinates. We shall start with a setup for a
local lattice theory in a finite system. The system size and lattice constant are denoted as N and
aL = 1 , respectively. We impose a the periodic boundary condition, ϕn = ϕn+N on any lattice field.

A general difference operator on lattice is defined as

(Dϕ)n ≡
N

∑
m

Dnmϕm, (2.1)

where ∑N
m Dnm = 0 due to a vanishing constant mode. For a product rule, we generally define as

(ϕ ×η)n ≡
N

∑
mℓ

Cnmℓϕmηℓ. (2.2)

In the next step, we concentrate on translational invariant theories from general lattice ones 1. As
the result, the difference operator and the product rule have the following property,

Dn m = Dn+k m+k = D(n−m) = D(n−m+N) (2.3)

and

Cnmℓ = Cn+k m+k ℓ+k = C(n− ℓ,m− ℓ) = C(n− ℓ+N,m− ℓ) = C(n− ℓ,m− ℓ+N), (2.4)

1The translational invariance strongly connects with the momentum conservation law. The strange momentum
conservation on lattice can be realized as [3, 4].
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where the periodic boundary condition is used. By N-root of unity,

wa ≡ e
2πia

N = ωa
N , zb ≡ e

2πib
N = ωb

N , ωN ≡ e
2πi
N , ωN

N = 1, (2.5)

we define "momentum" representations and their complex extentions,

D̂a ≡
N

∑
m

wm
a D(m) =

N

∑
m

ωam
N D(m),

D̂a+iεN ≡
N

∑
m

ω(a+iεN)m
N D(m),

Ĉab ≡
N

∑
m,n

wm
a zn

bC(n,m) =
N

∑
m,n

ωam+bn
N C(n,m),

Ĉa+iεN,b+iηN ≡
N

∑
m,n

ω(a+iεN)m+(b+iηN)n
N C(n,m), (2.6)

of the difference operator and the product rule where we must note that indices a,b are discrete
momentum labels. The locality in a finite volume system is defined as

|D(−n) | ≤ K e−κ|n| , κ > 0 , for 1 << |n| << N, (2.7)

for large N.
Using the orthogonality and the completeness property,

N

∑
a

ω(n+m)a
N = Nδn+m,0,

N

∑
n

ω(a+b)n
N = Nδa+b,0, (2.8)

the sufficient condition for locality in the finite system is that there exists nonzero finite ε with

max
a

{ ∣∣D̂a+iεN
∣∣} = O(N0), max

a,b

{ ∣∣Ĉa+iεN,b+iηN
∣∣} = O(N0), (2.9)

because

1
N

N

∑
a

ωn(a+iεN)
N D̂a+iεN =

1
N

N

∑
a

ωan
N D̂a =D(−n),

|D(−n) | ≤ 1
N

N

∑
a

∣∣D̂a+iεN
∣∣ e−2πε |n| ≤ max

a

{ ∣∣D̂a+iεN
∣∣} e−2π ε |n|, (2.10)

where the first equality is similar to the Cauchy’s integral theorem about a complex function owing
to independence on ε . For the rule C, there are similar inequalities. On the other hand, in the case
of

|D(−n) | ≤ K e−κ|n| , κ > 0 , for 1 << |n| << N, (2.11)

with
κ ±2πε > 0, (2.12)
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its necessary condition can be verified as

∣∣ D̂a+iεN
∣∣ =

∣∣∣∣∣ N

∑
m

ωm(a+iεN)
N D(m)

∣∣∣∣∣ ≤ N

∑
m

e−2πεm |D(m) | ≤ K
N

∑
m

e−(κ±2πε)|m| = O
(
N0) . (2.13)

For product rule, similarily, in the case of

|C (−m,−n) | ≤ K e−κ|m|−λ |n| , κ > 0, λ > 0, (2.14)

with
κ ±2πε > 0,λ ±2πη > 0, (2.15)

the necessary condition can be verified as

∣∣Ĉa+iεN,b+iηN
∣∣ =

∣∣∣∣∣ N

∑
m,n

ωm(a+iεN)+n(b+iηN)
N C (m,n)

∣∣∣∣∣
≤

N

∑
m,n

e−2π(εm+ηn) |C (m,n)|

≤ K
N

∑
m,n

e−(κ±2πε)|m|−(λ±2πη)|n| = O
(
N0) . (2.16)

In the summary of this section, we have proposed that (2.9) is the necessary and sufficient
conditions for the locality in a finite volume system.

3. Finite size no-go theorem for Leibniz rule on lattice

A no-go theorem states that translation invariance, locality, a Leibniz rule and nontrivial prod-
uct cannot be simultaneously satisfied on a finite volume lattice. The Leibniz rule by using only
translation invariance condition can be rewritten as

Ĉa,b(D̂a+b − D̂a − D̂b) = 0. (3.1)

For any a and b, if Ĉa,b ̸= 0, then (3.1) says

D̂a+b − D̂a − D̂b = 0. (3.2)

The general solution of (3.2)is given by

D̂a =
a
b

D̂b ∝ a. (3.3)

The solution (3.3) is SLAC-type [5] owing to

ωa
N = e

2πia
N = eip ⇒ a ∝ p, (3.4)

and is non-local because of

max
a

{∣∣D̂a+iε N
∣∣} ≥ 1

N

N

∑
a

∣∣ D̂a+iε N
∣∣ =

1
N

N

∑
a
|a+ iεN |

∣∣∣∣ D̂b

b

∣∣∣∣ = O
(
N 1) ̸= O(N0). (3.5)
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If Ĉa,b is nontrivial, then D(n) is SLAC-type and it is nonlocal. q.e.d
One of possible solutions may be the case that D is local but C is trivial or nonlocal. We can

illustrate one example: Ĉa,b = Kδa+b,1 . If K = O(N0), then the product rule is trivial which leads
us to a trivial continuum limit. On the other hand, if K = O(N1), then it is just nonlocal. The real
space expression is

Clmn = C(l −m, l −n) =
K
N

δm,nω−(l−n)
N . (3.6)

Its Leibniz rue realization is the followings,

D̂1 = D̂a + D̂1−a. (3.7)

This relation is not difficult to construct its local solutions. Using one of these solutions, we can
write an explicit supersymmetric interacting action,

S =
1
2

Dϕ ·Dϕ + iψ̄ ·Dψ +F ·F +
ig
2

F · (ϕ ×ϕ)+ igϕ · (ψ̄ ×ψ) (3.8)

ϕ ·χ ≡
N

∑
n

ϕnχn, (ϕ ×χ)n ≡
N

∑
m,l

Cnmlϕmχl (3.9)

where the supersymmetry can be defined as

δϕ = εψ̄ +ψε̄,

δψ = ε (iDϕ +F) , δψ̄ = ε̄ (−iDϕ +F) ,

δF = −iεDψ̄ − iε̄Dψ. (3.10)

4. Multi-flavor system and matrix representation

In a finite multi-flavor system on lattice, no-go theorem on a Leibniz rule can be proved [1]
but there exists the Lebniz rule through a matrix product rule in the matrix representation of an
infinite flavor system [2]. This apparent inconsistency or the curious flavor limit can be solved by
classifying two kinds of flavors after appropriate flavor diagonalization.

For a finite flavor N f and a finite volume N system, product rule and a difference operator are
defined as

(φ ×χ)p
l ≡

N,N f

∑
m,n,q,r

Cpqr
lmnφq

mχr
n, (Dφ)p

l ≡
N,N f

∑
m,q

Dpq
lm (4.1)

where indices p,q,r are flavor ones. From these translation invariance, we introduce the following
notation,

Cpqr
lmn = Cpqr(m− l,n− l), Dpq

lm = Dpq(m− l). (4.2)

The w-representations(N-root expressions) of the product rule and the difference operator are ex-
pressed as

Ĉpqr
LM ≡

N

∑
m,n

ωLm+Mn
N Cpqr(m,n), D̂pq

L ≡
N

∑
m

ωLm
N Dpq(m). (4.3)
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Their flavor matrix forms are (
Ĉq

LM

)
pr ≡ Ĉpqr

LM ,
(
D̂L

)
pq ≡ D̂pq

L . (4.4)

The Jordan’s standard form of D̂ leads us to the following parametrization in the flavor matrix,

D̂ →UD̂U−1 = D̂diag + Ê+, (4.5)

where
D̂pq

diag = ∆̂p
Lδpq, Ê pq

+ = ε p
L δp,q+1, ∆̂p

0 = 0, ε p
L = 0 or 1. (4.6)

Then, we can write the Leibniz rule by a flavor matrix form(
∆̂p

L+M − ∆̂q
L − ∆̂r

M

)
Ĉpqr

L,M = R̂pqr
L,M(ε), (4.7)

where
R̂pqr

L,M(ε) ≡−ε p
L+MĈp−1 qr

L,M + εq+1
L Ĉp q+1 r

L,M + εr+1
M Ĉpqr+1

L,M . (4.8)

For a finite flavor system, since

1 ≤ p,q,r ≤ N f , Ĉ0qr
L,M = Ĉp N f +1 r

L,M = Ĉpq N f +1
L,M = 0, (4.9)

it follows as
Rpqr

L,M(ε) = 0. (4.10)

Therefore, the Leibniz rule of a finite flavor by a flavor matrix form is rewritten as(
∆̂p

L+M − ∆̂q
L − ∆̂r

M
)

Ĉpqr
L,M ≡ D̂pqr

L,MĈpqr
L,M = 0. (4.11)

The solution is easily found as
D̂pqr

L,M = 0 or Ĉpqr
L,M = 0. (4.12)

D̂pqr
L,M = 0 case leads us to ∆̂p(wa) = 0 in the local lattice theory framework, using a finite system

no-go theorem which is proved in the previous section. Consequently, for a finite-flavored infinite
volume system, we have the following two kinds of flavors; flavor type-A means that it has a trivial
difference operator, ∆̂p(w) = 0 and flavor type-B does a trivial field product Ĉpqr

L,M = 0 between its
flavors.

The next stage is the analysis for the matrix representation of an infinite flavor and infinite
volume system. In the representation, we treat field variables, Φi j where both i and j run from
1 to Nmatrix. We must consider an N = N f = 2Nmatrix case because the following identification is
realized,

Φi j = ϕ p=(i− j)
n=(i+ j) . (4.13)

The product rule between matrices leads us to

Cpqr
lmn ∝ δp,q+rδn−l,qδl−m,r , (4.14)

and the commutator difference operator corresponds to
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[d, Φ]i j = (Dϕ)p=(i− j)
n=(i+ j) , (4.15)

where d implies some anti-hermitian Nmatrix ×Nmatrix matrix. For this matrix representation, since
we impose the usual periodic boundary condition for both a lattice space and a flavor space, the
following relation

Rpqr
L,M(ε) ̸= 0, (4.16)

is generated inevitably. This relation is the essential difference for usual finite flavor systems.
Furthermore, owing to R ̸= 0, there is always mixing between coupling-free flavor-B and motion-
free flavor-A.

5. Summaries

We have proved a Leibniz rule no-go theorem in a finite volume system. Instead of holomor-
phic functions for infinite volume systems, we used the discrete bounded functions. Then, we can
classify cases keeping the rule on lattice into the following three ones:

1 If we take a local nontrivial product Clmn, then Dmn is always SLAC-type (nonlocal).
2 If Dmn is local, then Clmn is nonlocal or trivial. New possibility supersymmetry application

with the strange momentum conservation law [3, 4].
3 If Dmn is SLAC-type (nonlocal), then Clmn is arbitrary.

In the case of the second possibility, we can construct an explicit supersymmetric action with
interactions.

For a finite flavor system versus the matrix representation in the infinite flavor system , we
make a table:

the number of Leibniz rule locality A-B separation
components

multi flavor N f ×N no-go local yes
multi flavor N f ×N no-go nonlocal yes

matrix N ×N escape nonlocal no
representation = Nmatrix ×Nmatrix by N infinity
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