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In order to investigate the direct relation between confinement and chiral symmetry breaking in
QCD, we investigate the Polyakov loop in terms of the Dirac eigenmodes in both confined and
deconfined phases. Using the Dirac-mode expansion method in SU(3) lattice QCD, we analyze
the contribution of low-lying and higher Dirac-modes to the Polyakov loop, respectively. In
the confined phase below Tc, after removing low-lying Dirac-modes, the chiral condensate 〈q̄q〉
is largely reduced, however, the Polyakov loop remains almost zero and Z3-center symmetry
is unbroken. These results indicate that the system is still in the confined phase without low-
lying Dirac-modes. By higher Dirac-modes cut, the Polyakov loop also remains almost zero
below Tc. We also analyze the Polyakov loop in the deconfined phase above Tc. We find that the
Polyakov loop and Z3-symmetry behavior are insensitive to low-lying and higher Dirac-modes in
both confined and deconfined phases.
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1. Introduction

Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction, how-
ever, its non-perturbative properties such as confinement and chiral symmetry breaking are not yet
well understood. In particular, to clarify the correspondence between confinement and chiral sym-
metry breaking is one of difficult and interesting subjects [1, 2, 3, 4, 5, 6, 7]. As an evidence of the
close relation between them, lattice QCD calculation shows that simultaneous deconfinement and
chiral phase transition at finite temperature [8].

As shown in the Banks-Casher relation [9], the chiral condensate 〈q̄q〉 is proportional to the
Dirac zero-mode density as

〈q̄q〉 = − lim
m→0

lim
V→∞

π〈ρ(0)〉, (1.1)

where ρ(λ ) is the Dirac spectral density. Thus, the low-lying Dirac eigenmodes directly relate to
chiral symmetry breaking, however, their relation to confinement is still unclear.

Therefore, it is interesting to analyze confinement in terms of the relevant degrees of freedom
for chiral symmetry breaking, i.e., the low-lying Dirac eigenmodes. For example, based on the
Gattringer’s formula [1], the Polyakov loop can be investigated by the sum of Dirac spectra with
twisted boundary condition on lattice [2, 3, 4]. In our previous studies [5, 6], we formulated the
Dirac-mode expansion method in lattice QCD, and investigated the Dirac-mode dependence of the
Wilson loop and the interquark potential. It is also reported that hadrons still exist as bound states
without “chiral symmetry breaking” by removing low-lying Dirac-modes [10, 11].

In this paper, we investigate the Dirac-mode dependence of the Polyakov loop in both confined
and deconfined phases at finite temperature, using Dirac-mode expansion method in lattice QCD
[5, 6, 7]. In Sec. 2, we review the Dirac-mode expansion method, and formulate the Dirac-mode
projected Polyakov loop. In Sec. 3, we perform the lattice QCD calculations for the Polyakov loop
with Dirac-mode projection. Section 4 is devoted for the summary.

2. Dirac-mode expansion method in lattice QCD

Here, we introduce the Dirac-mode expansion technique in lattice QCD [5, 6, 7], and formu-
lation of the Dirac-mode projected Polyakov loop.

2.1 Dirac-mode expansion in lattice QCD

Using the link-variable Uµ ∈ SU(Nc), the Dirac operator /D = γµDµ is given by

/Dx,y ≡
1

2a

4

∑
µ=1

γµ
[
Uµ(x)δx+µ̂,y −U−µ(x)δx−µ̂,y

]
, (2.1)

with a lattice spacing a, and U−µ(x) ≡ U†
µ(x− µ̂). Here, γ-matrix is defined to be hermitian, i.e.,

γ†
µ = γµ . Thus, /D becomes an antihermitian operator, and Dirac eigenvalues are pure imaginary.

We introduce the normalized Dirac eigenstate |n〉, which satisfies

/D|n〉 = iλn|n〉, (2.2)
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with λn ∈ R, and an eigenfunction ψn(x) is expressed as

ψn(x) ≡ 〈x|n〉, (2.3)

which satisfies /Dψn = iλnψn.
We introduce the operator formalism in lattice QCD [5, 6, 7], which is constructed from the

link-variable operator Ûµ . The link-variable operator is defined by the matrix element as

〈x|Ûµ |y〉 = Uµ(x)δx+µ̂,y, (2.4)

using the original link-variable Uµ(x). We define the Dirac-mode matrix element 〈n|Ûµ |m〉 as

〈n|Ûµ |m〉 = ∑
x
〈n|x〉〈x|Ûµ |x+ µ̂〉〈x+ µ̂|m〉 = ∑

x
ψ†

n (x)Uµ(x)ψm(x+ µ̂), (2.5)

with the Dirac eigenfunction ψn(x).
Considering the completeness relation ∑n |n〉〈n| = 1, any operator Ô can be expressed as

Ô = ∑
n

∑
m
|n〉〈n|Ô|m〉〈m|, (2.6)

using the Dirac-mode basis. Note that this procedure is just the insertion of unity, and it is math-
ematically correct. This expansion (2.6) is the mathematical basis of the Dirac-mode expansion
method [5, 6, 7]. Next, we consider the Dirac-mode projection by introducing projection operator
as

P̂ ≡ ∑
n∈A

|n〉〈n|, (2.7)

for arbitrary set A of eigenmodes. For example, IR and UV mode-cut operators are given by

P̂IR ≡ ∑
|λn|≥ΛIR

|n〉〈n|, P̂UV ≡ ∑
|λn|≤ΛUV

|n〉〈n|, (2.8)

with the IR/UV cutoff scale ΛIR and ΛUV.
Using the projection operator P̂, the Dirac-mode projected link-variable operator is given by

ÛP
µ ≡ P̂Ûµ P̂ = ∑

n∈A
∑

m∈A

|n〉〈n|Ûµ |m〉〈m|. (2.9)

We can investigate the Dirac-mode dependence of various kinds of quantities, e.g., the Wilson loop
[5, 6], using the projected link-variable ÛP

µ instead of the original link-variable operator Ûµ .

2.2 Polyakov loop operator and Dirac-mode projection

Next, we formulate the Dirac-mode projected Polyakov loop. Here, we consider the periodic
SU(3) lattice with the space-time volume V = L3 ×Nt and the lattice spacing a. In the operator
formalism of lattice QCD, the Polyakov loop operator is given by

L̂P ≡ 1
3V

Nt

∏
i=1

Û4 =
1

3V
ÛNt

4 (2.10)
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with the temporal link-variable operator Û4. By the functional trace “Tr”, the Polyakov loop oper-
ator coincides with the standard definition as

Tr L̂P =
1

3V
Tr {

Nt

∏
i=1

Û4} =
1

3V
tr∑

~x,t
〈~x, t|

Nt

∏
i=1

Û4|~x, t〉

=
1

3V
tr∑

~x,t
〈~x, t|Û4|~x, t +a〉〈~x, t +a|Û4|~x, t +2a〉 · · · 〈~x, t +(Nt −1)a|Û4|~x, t〉

=
1

3V
tr∑

~x,t
U4(~x, t)U4(~x, t +a) · · ·U4(~x, t +(Nt −1)a) = 〈LP〉, (2.11)

where “tr” denotes the trace over SU(3) color index.
We define the Dirac-mode projected Polyakov loop 〈Lproj.

P 〉 as

Lproj.
P ≡ 1

3V
Tr {

Nt

∏
i=1

ÛP
4 } =

1
3V

Tr
{

P̂Û4P̂Û4P̂ · · · P̂Û4P̂
}

=
1

3V
tr ∑

n1,n2,...,nNt ∈A

〈n1|Û4|n2〉〈n2|Û4|n3〉 · · · 〈nNt |Û4|n1〉. (2.12)

In particular, the IR and the UV Dirac-mode projected Polyakov loop are denoted as

〈LP〉IR ≡ 1
3V

tr ∑
|λni |≥ΛIR

〈n1|Û4|n2〉 · · · 〈nNt |Û4|n1〉, (2.13)

〈LP〉UV ≡ 1
3V

tr ∑
|λni |≤ΛUV

〈n1|Û4|n2〉 · · · 〈nNt |Û4|n1〉, (2.14)

with the IR/UV eigenvalue cutoff ΛIR and ΛUV.

3. Lattice QCD calculation for Dirac-mode projected Polyakov loop

In this section, we calculate the Dirac-mode projected Polyakov loop using SU(3) lattice QCD
at the quenched level. We evaluate the full Dirac eigenmodes using LAPACK [12]. For actual
calculation, we use the eigenmode basis of the Kogut-Susskind (KS) operator of

DKS
x,y ≡ 1

2a

4

∑
µ=1

ηµ(x)
[
Uµ(x)δx+µ̂ ,y −U−µ(x)δx−µ̂ ,y

]
, (3.1)

with η1(x) ≡ 1 and ηµ(x)≡ (−1)x1+···+xµ−1 (µ ≥ 2) in order to reduce the computational cost. The
use of the KS-Dirac operator gives the same result as the original Dirac operator in Eq. (2.1) for
the Polyakov loop.

3.1 The confined phase

First, we analyze the Polyakov loop in the confined phase below Tc. Here, we use 64 lattice
with β = 5.6, which corresponds to the lattice spacing a ' 0.25 fm and T ≡ 1/(Nta) ' 0.13 GeV
[5, 6, 7].
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Figure 1: The spectral density ρ(λ ) of the Dirac operator on 64 lattice with β = 5.6, i.e., a = 0.25 fm: (a)
original spectral density, (b) IR-cut ρIR(λ ) at ΛIR = 0.5a−1, (c) UV-cut ρUV(λ ) at ΛUV = 2.0a−1.
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Figure 2: The scatter plot of the Polyakov loop in the confined phase on 64 lattice with β = 5.6, i.e.,
a = 0.25 fm and T ≡ 1/(Nta) ' 0.2 GeV. (a) The original (no Dirac-mode cut) Polyakov loop. (b) The
low-lying Dirac-mode cut at ΛIR = 0.5a−1. (c) The higher Dirac-mode cut at ΛUV = 2.0a−1.

Figure 1 shows the lattice QCD results for the Dirac spectral density ρ(λ ), and IR/UV-cut
spectral density ρIR(λ )≡ ρ(λ )θ(|λ |−ΛIR), ρUV(λ )≡ ρ(λ )θ(ΛUV−|λ |) with ΛIR = 0.5a−1 and
ΛUV = 2.0a−1. The total number of the KS Dirac-mode is L3 ×Nt ×3 = 3888, and both mode cuts
correspond to removing about 400 modes.

Figure 2 shows the scatter plot of the original Polyakov loop, low-lying Dirac-modes cut
at ΛIR = 0.5a−1, and the higher Dirac-modes cut at ΛUV = 2.0a−1, respectively. As shown in
Fig. 2(a), the Polyakov loop is almost zero, i.e., 〈LP〉 ' 0, which indicates the confined phase.

Then, we consider low-lying Dirac-modes projection, which leads to the effective restoration
of chiral symmetry breaking [6, 9, 10, 11]. In the presence of the IR cut ΛIR, the quark condensate
is given by

〈q̄q〉IR = − 1
V ∑

λn≥ΛIR

2m
λ 2

n +m2 . (3.2)

At the IR cut parameter ΛIR = 0.5a−1 ' 0.4 GeV, only 2% of the quark condensate remains as
〈q̄q〉IR/〈q̄q〉 ' 0.02 around the physical region m ' 5 MeV [6]. However, as shown in Fig. 2(b),
the Polyakov loop 〈LP〉IR remains almost zero and Z3-center symmetry is unbroken, and these facts
indicate that the system still remains in the confined phase, even without chiral symmetry breaking.

In addition to the low-lying mode cut, we show the higher Dirac-modes cut in Fig. 2(c). In
this case, the chiral condensation is almost unchanged, and the Polyakov loop remains almost zero.
Therefore, the Polyakov loop is insensitive to both low-lying and higher Dirac eigenmodes.
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Figure 3: The scatter plot of the Polyakov loop in the deconfined phase on 63 × 4 lattice with β = 6.0,
i.e., a = 0.10 fm and T ≡ 1/(Nta) ' 0.5 GeV. (a) The original (no Dirac-mode cut) Polyakov loop. (b) The
low-lying Dirac-mode cut at ΛIR = 0.5a−1. (c) The higher Dirac-mode cut at ΛUV = 2.0a−1.

3.2 The deconfined phase at high temperature

Next, we investigate the Polyakov loop in the deconfined phase at high temperature. Here, we
use 63 × 4 lattice with β = 6.0, which corresponds to a = 0.10 fm and T ≡ 1/(Nta) ' 0.5 GeV.
The total number of the KS Dirac-mode is L3 ×Nt ×3 = 2592.

We show the original Polyakov loop, typical low-lying mode cut at ΛIR = 0.5a−1, and higher
mode cut at ΛUV = 2.0a−1 in Fig. 3. These mode cuts correspond to removing about 200 eigen-
modes. As shown in Fig. 3(a), the Polyakov loop has non-zero expectation value 〈LP〉 6= 0, and
shows the center group Z3 structure on the complex plane. These behaviors indicate the deconfined
phase.

As shown in Figs. 3(b) and (c), the Polyakov loop shows the characteristic behaviors in the
deconfined phase even after removing low-lying or higher Dirac-modes. To be strict, the UV-cut
Polyakov loop has a smaller absolute value than the IR-cut Polyakov loop, although the number
of UV-cut modes is comparable to that of the IR-cut case. This suggests that contributions of the
higher Dirac-modes are much larger than low-lying modes [2]. However, apart from the normal-
ization, both IR and UV cut Polyakov loops show the characteristic Z3-pattern in the deconfined
phase, and hence these Dirac-modes seem to be insensitive to the Polyakov loop properties.

Figure 4 shows the Dirac spectral densities in confined and deconfined phases on 63×4 lattice
with β = 5.6 and 6.0, respectively. We also compare their low-lying spectral densities in Fig. 4(c).
In the deconfinement phase, the low-lying Dirac-modes are suppressed, which leads to the chiral
restoration. The chiral condensate is also reduced by the IR cut of the Dirac-modes as in Eq. (3.2).
On the other hand, there seems no clear correspondence between the Dirac spectral densities and
the Polyakov loop.

3.3 β -dependence of the Dirac-mode projected Polyakov loop

Finally, we investigate β -dependence of the Dirac-mode projected Polyakov loop. Here, we
adopt 63 ×4 lattice with β = 5.4 ∼ 6.0.

Figure 5 is the absolute values of the Polyakov loop with typical Dirac-mode projections,
and the original Polyakov loop data are also added for comparison. In this lattice volume, the
deconfinement phase transition occurs around β = 5.6 ∼ 5.7. As shown in Fig. 5, both low-lying

6
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Figure 4: The Dirac spectral densities in confined and deconfined phases, respectively (a) 63×4 lattice with
β = 5.6 in the confined phase. (b) 63 ×4 lattice with β = 6.0 in the deconfined phase. (c) The comparison
between confined and deconfined phases on low-lying spectral densities.
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Figure 5: β -dependence of the absolute value of the Polyakov loop on 63×4 lattice. (a) The IR Dirac-mode
cut with ΛIR = 0.5a−1 and 1.0a−1. (b) The UV Dirac-mode cut with ΛUV = 2.0a−1 and 1.7a−1.

and higher Dirac-mode projected Polyakov loops show the similar β -dependence as the original
data, apart from a normalization factor. This Dirac-mode insensitivity of the Polyakov loop is
consistent with the results in the previous subsections.

4. Summary

In this paper, we have analyzed the Polyakov loop in terms of the Dirac eigenmodes using
SU(3) lattice QCD. We have carefully removed relevant degrees of freedom for chiral symmetry
breaking from the Polyakov loop.

In the confined phase below Tc, the Polyakov loop is almost zero, i.e., 〈LP〉 ' 0. By removing
low-lying Dirac-modes, the chiral condensate 〈q̄q〉 is largely reduced. However, we have found
that the Polyakov loop remains almost zero as 〈LP〉IR ' 0 even without low-lying Dirac-modes,
and this fact indicates that the system still remains in the confined phase. We have also investigated
contributions from higher Dirac-modes to the Polyakov loop, and have found no change of the
Polyakov loop without higher Dirac-modes. Therefore, there seems no specific region of the Dirac
eigenmodes essential for the Polyakov loop.

We have also investigated the Polyakov loop in the deconfined phase at high temperature. In
the deconfined phase, the Polyakov loop has non-zero expectation value, i.e., 〈LP〉 6= 0, which dis-
tributes around Z3 elements in the complex plane. These characteristic behaviors also remain with-
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out low-lying and higher Dirac eigenmodes. Therefore, the Polyakov loop and the Z3-symmetry
behavior do not depend on low-lying and higher Dirac eigenmodes in both confinement and decon-
finement phases.

Here, we comment on the related studies about the correspondence between the Dirac eigen-
modes and confinement. In the previous studies [5, 6], we investigated Dirac-mode dependence
of the Wilson loop, and found that the confining potential survives without low-lying Dirac eigen-
modes. The Graz group also reported that hadrons still remain as bound states without chiral sym-
metry breaking by removing low-lying Dirac-modes [10, 11], which seems to suggest the existence
of the confining force.

These lattice QCD studies suggest that there is no direct relation between chiral symmetry
breaking and confinement through the Dirac eigenmodes. For further investigation of correspon-
dence between these phenomena, it is also interesting to analyze chiral symmetry breaking from
the relevant eigenmodes of confinement [13].
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