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1. Introduction

For several years my collaborators and I have been studying SU(N) gauge theories, N = 2,3,4,
with fermions in the two-index symmetric representation of color [1]–[6]. In each case, we have
examined the theory with 2 flavors. As a function of the number of flavors, these theories lie near
the borderline between confinement and screening [7]; screened gauge theories are believed to be
governed by an infrared fixed point, and hence are called conformal. The main question we have
been asking is whether each theory is above or below the borderline, that is, whether it is inside
the conformal window in N f . With results for these three theories in hand, it is a good time to sum
things up.

QCD, familiar and much-studied, has a rapidly running coupling that becomes strong in the
infrared, where the consequences are quark confinement and spontaneous breaking of chiral sym-
metry. The monotonic running of the coupling is expressed by the strictly negative β function of
QCD. As we increase the number of massless flavors in QCD, we expect (based on the form of the
two-loop β function [8, 9]) that the β function will develop a shape that includes a zero-crossing
at some coupling g∗; this is an infrared fixed point, where the theory is trapped as we go to large
distance scales. Of special interest is the regime in N f where the theory is just short of forming an
IRFP; this is a theory with a β function that lies near the axis, a walking theory.

Our approach to the theories at hand is via their β functions. We use the Schrödinger functional
method [10, 11] to calculate the running coupling and to see how it changes with scale; the scale
chosen is the volume of the lattice, which affects the coupling through a background field. No
lattice calculation, however, can proceed without understanding the phase diagram of the theory,
and indeed the phase diagram offers its own hints about the physics of the continuum theory.
Finally, once the Schrödinger functional is implemented, it is straightforward to go beyond the β

function to calculate the anomalous dimensions of various operators. The anomalous dimension
γm of the fermion mass parameter [12] is in fact easier to calculate than the β function, and it is
not without phenomenological interest. I will describe the method and results in this talk. But first
I’d like to make some general comments about the difficulty of life near the sill of the conformal
window.

The cases of walking and of an IRFP are both hard cases for study, and they are hard to tell
apart. They are characterized by slow running (at best), so that strong coupling in the IR—where
we look for the fixed point—is also strong coupling in the UV—that is, at the scale of the lattice
spacing a. A QCD-style weak-coupling continuum limit would require an enormous ratio between
the size L of the lattice and the lattice spacing a. On the other hand, any lattice of ordinary, practical
dimensions allows you to look only at a narrow range of scales. In fact, even in a clearly conformal
theory the largest scale L may still leave you far from the IRFP, so that you miss the scale invariance
entirely.

Another way of saying this [13] is to note that if there is an IRFP then the gauge coupling is
an irrelevant coupling under the RG, while the quark mass mq is a relevant parameter, as is 1/L.
This means that the massless limit would bring into play very bad finite-size effects.

All this supplies motivation to use the Schrödinger functional, which turns finite volume from
a hindrance into a method.
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2. The β function in the massless theory

The Schrödinger functional method defines the running coupling as follows. Take a hypercu-
bical Euclidean box of volume L4 and a massless gauge theory. We fix the gauge field Ai(x, t) on
the two time boundaries of the box, t = 0,L. This sets up a background electric field in the box;
this field is the unique minimum of the classical action Scl =

∫
d4xF2

µν . We scale the field with L
so that L is the only scale in the problem. Now we calculate (in principle) the quantum partition
function Z and, from it, the effective action Γ = − logZ of the background field and its quantum
fluctuations. In perturbation theory it has to be proportional to the classical action, and the constant
of proportionality is just the running coupling at the scale L,

Γ =
1

g2(L)
Scl. (2.1)

The SF method takes this to be the nonperturbative definition of the running coupling: It is the
ratio of Γ to the classical action of the background field.

Let me skip most of the details of how we carry out such a calculation on the lattice. The most
important fact is that, since Γ cannot be calculated directly, we work with its derivative dΓ/dη

with respect to some parameter η in the boundary gauge field. This can be calculated as a lattice
correlation function, and we then compare its value to the same derivative of Scl to obtain g2(L).

We work with Wilson–clover fermions, using fat links in the fermion action to suppress lattice
artifacts. For each value of the (bare) lattice coupling g0, we find the critical hopping parameter
κc(g0) (related to the bare mass) by demanding that the current mass mq of the fermion be zero.
The current mass is defined by an axial Ward identity that relates correlation functions of the axial
current to those of the pseudoscalar density,

∂µ〈Aaµ(x)Oa〉= 2mq〈Pa(x)Oa〉, (2.2)

where Oa is a convenient source on a wall of the lattice. Then, given g0 and κ , we calculate the
running coupling for a range of lattice sizes L = 6a, . . . ,16a.

Let’s focus now on the SU(2) theory [4]. (The fermions are color triplets.) If we plot the
running coupling against logL (Fig. 1) we find that the data for each value of g0 line up. Starting
with L = 6a, let’s define a variable for the inverse coupling at scale factor s according to u(s) ≡
1/g2(sL). The beta function for u is

β̃ (u)≡ du/d logs = 2β (g2)/g4. (2.3)

The slopes in Fig. 1 would give β̃ (u) directly, except that the running coupling g2(L) changes as L
is increased for any g0. Here, however, we can take advantage of the fact that the theory is either
conformal or close to it: The running of the coupling is so slow that the coupling changes little
along the lines drawn in the figure, and hence β̃ (u)—the slope of each line—also changes little.
Extracting the slopes and plotting them against the coupling g(L = 8a) gives the approximate β̃ (u)
plotted in the right-hand figure. Evidently the β function crosses zero, an infrared fixed point.
Interestingly, the lattice result tracks the two-loop β function fairly well. Comparison of the black
squares (the full fits) to the red circles (obtained by dropping the L = 6a lattices) gives some idea
of the sensitivity of the result to the lattice spacing.
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Figure 1: SU(2)/triplet theory [4]. Left: SF coupling vs. size L of the lattice, for bare couplings g0 ranging
from weak (top) to strong (bottom). The fitted slopes give the β̃ function. The dotted line has the slope of
β̃ calculated in the weak coupling limit (one loop). Right: The β̃ function extracted from these slopes. The
dash-dotted line is the one-loop value and the dotted curve is the two-loop result.
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Figure 2: Sketched phase diagram for the SU(3)/sextet theory.

3. Phase Diagram

Let’s pause for a look at a phase diagram. Fig. 2 is a sketch of the phase diagram we’ve
explored [3] for the SU(3) theory (with sextet fermions) on a finite lattice. The lower left-hand
corner of the diagram is a strong-coupling, confining phase, walled off by (1) the first-order finite-
temperature transition to the right, which connects to (2) a first-order phase boundary reached by
increasing κ in the small β (≡ 6/g2

0) regime. There are two important consequences of this diagram
for our work.
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1. How is one to contemplate a continuum limit for this theory? In QCD, the horizontal part
of the phase boundary is a second-order transition to the Aoki phase. One reaches a theory
with massless pions on this curve; then, as L is increased, the corner of the confining phase
slides to the right, towards a continuum limit with a massless (or at least a light) pion. In the
sextet theory, on the other hand, the confining phase is strictly massive and so is the phase
boundary; it is hard to imagine taking such a limit, unless there is a dramatic change in the
phase boundary when L is sufficiently large. The alternative is to take a continuum limit in
the non-confining phase on the right, on the κc(β ) curve where mq = 0. Is this a sign of
a conformal infrared theory? (This conundrum was posed long ago [14, 15] for QCD with
N f & 8. See also [16].)

2. For the SF method we require mq = 0. This can only be achieved in the right side of the
diagram. As we go towards stronger coupling in search of an IRFP, we will be forced to halt
where the κc curve hits the phase boundary, since there is no locus where mq = 0 to the left
of that point. (mq changes sign discontinuously on the horizontal phase boundary.)

The second point is the reason that we cannot continue measuring the β function plotted in
Fig. 1 at yet stronger couplings; we are lucky to be able to reach the IRFP in the SU(2)/triplet
theory. In the SU(3)/sextet and SU(4)/decuplet theories the consequences are yet more serious,
since the phase boundary is reached at relatively weak couplings, well short of the two-loop fixed
point in each case. Our solution to this problem is to generalize the lattice action to include a
pure-gauge plaquette term built out of the fat links used in the fermion term,

Sg =
β

2Nc
∑TrUp +

β f

2d f
∑TrVp . (3.1)

Judicious choice of β f moves the phase boundary and thus expands the accessible range of the
running coupling.

I show the β̃ functions for the SU(3) [5] and SU(4) [6] theories in Fig. 3. It looks like the SU(3)
theory possesses an IRFP, but the error bars on the leftmost points don’t allow this conclusion to
be stated with confidence. It is quite possible that the β function turns away from the axis without
crossing it, as envisioned in a “walking” scenario. This is true all the more for the SU(4) theory. It
is important to note that we cannot yet provide a systematic continuum limit for the β function in
any of these theories because large fluctuations prevent a smooth extrapolation.

4. Mass anomalous dimension

From the axial Ward identity (2.2), one derives that the anomalous dimension γm of the mass
parameter can be extracted from the normalization ZP of the pseudoscalar density Pa(x). We obtain
ZP from a correlation function,〈

Pb(t) Ob(t ′ = 0)
〉∣∣∣

t=L/2
= ZP ZO e−mπ L/2, (4.1)

which propagates the lightest particle in the theory from a source O on the wall to the center of the
lattice; we remove the normalization ZO of O as well as mπ by calculating a wall-to-wall correlator,〈

Ob(t = L) Ob(t ′ = 0)
〉
= Z2

O e−mπ L . (4.2)
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Figure 3: β̃ functions for the SU(3)/sextet (left) and SU(4)/decuplet (right) theories [5, 6]. Black squares
vs. red circles denote the two different actions used for each theory.
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Figure 4: Left: SU(2)/triplet theory [4]. Pseudoscalar renormalization constant ZP plotted against the size
L of the lattice, for bare couplings g0 ranging from weak (top) to strong (bottom). The fitted log–log slopes
give −γm. Right: γm(g2) for the SU(2,3,4) theories, plotted together [6].

Upon extracting ZP, we use its L-dependence to find γm via

ZP(L)
ZP(L0)

=

(
L
L0

)−γm

, (4.3)

which again incorporates the observation that the running is slow and hence γm(g2) is approxi-
mately constant as L changes at fixed g0.

The extraction of γm(g2) from a log–log fit is illustrated in Fig. 4. I’ve plotted there the re-
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Figure 5: SU(3)/sextet theory [5]: Continuum extrapolations of γm(g2). the black squares and red circles
originate from two different lattice actions, while empty (filled) symbols represent linear (quadratic) extrap-
olations.

sults for all three theories, using the large-N variable g2N as a common abscissa [6]. This plot is
remarkable for three reasons:

1. The curves for all three theories depart from the one-loop line and level off.

2. They level off at about the same value.

3. This value is much less than one.

The last point is significant because various approximations and models [17, 18, 19] predict that
theories near the sill of the conformal window, and particularly walking theories, should give γm '
1. Once more, however, I have plotted results that do not take account of finite lattice error. Since
many people are upset by the finding that γm never approaches 1, we have invested extra effort and
produced a continuum extrapolation for the SU(3)/sextet theory [5]. As can be seen in Fig. 5, the
error bars have grown and there is added uncertainty in how to extrapolate, but on the whole the
extrapolations drive γm further down.
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