
P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

 

Harness public computing resources for protein structure 

prediction computing 

Wenjing Wu1 

Computing Center, Institute of High Energy Physics, CAS 

19B Yuquan Road, Beijing, China 

E-mail: wuwj@ihep.ac.cn 

Gang Chen 

Computing Center, Institute of High Energy Physics, CAS 

19B Yuquan Road, Beijing, China 

E-mail: cheng@ihep.ac.cn 

Wenxiao Kan 

Computing Center, Institute of High Energy Physics, CAS 

19B Yuquan Road, Beijing, China 

E-mail: kanwx@ihep.ac.cn 

David Anderson 

Space Sciences Laboratory, University of California, Berkeley  

E-mail: davea@ssl.berkeley.edu 

Francois Grey 

CNMM, Tsinghua University 

E-mail: francois.grey@cern.ch 

                                                 
1

 
  Gang Chen 

mailto:cheng@ihep.ac.cn
mailto:kanwx@ihep.ac.cn
mailto:davea@ssl.berkeley.edu
mailto:francois.grey@cern.ch


P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

Jin Li 

Institute of Computing Technology, CAS  

E-mail: lijin01@ict.ac.cn 

Dongbo Bu 

Institute of Computing Technology, CAS  

E-mail: dbu@ict.ac.cn 

 

 

 

Protein structure prediction is a CPU intensive activity.  Although algorithms have improved 

over time, the amount of CPU required for predicting all the existing protein sequences is still 

beyond the capacity of any single computer center. At the same time, volunteer computing has 

been evolving into a widely used technology for scientific computing. This paradigm has 

enabled previously infeasible science research. In this paper, based on our practical experiences, 

we will present how we ported the protein structure prediction software TreeThreader to a 

volunteer computing platform, and achieved the high throughput by designing its computing 

model based on the features of volunteer computing and the software itself. Running 

TreeThreader on this platform has achieved 1.27TFLOPS sustained processing rate on about 

2000 active volunteer hosts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The International Symposium on Grids and Clouds (ISGC) 2013 

March 17-22, 2013 

Academia Sinica, Taipei, Taiwan



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

1. Introduction 

1.1 Public Resource Computing 

The world’s computing power and disk space is no longer primarily concentrated in 

supercomputer centers and machine rooms. Instead it is distributed in hundreds of millions of 

personal computers and game consoles belonging to the general public.  Volunteer computing  

uses these resources to do scientific computing. This paradigm enables previously infeasible 

research. The potential resource of this paradigm is very large. The number of 

Internet-connected PCs is growing rapidly, and is projected to reach 1 billion by 2015 [1]. 

Together, these PCs could provide many ExaFLOPs of computing power. 

1.2 Protein Structure Prediction and TreeThreader 

The understanding of protein structures [2] [3] is essential for a complete understanding 

of life processes at the molecular level. Currently, over seven million protein sequences are 

deposited in the UniProtKB/TrEMBL database, but only 50,000 of them have experimentally 

solved structures.  

 Threading is the leading methods for protein structure prediction, and it is exceedingly 

time-consuming because the query sequence needs to be aligned to all templates in the database. 

TreeThreader  is a new practical threading program, which can take pairwise interaction into 

consideration. It has been proved that the general case of the problem (in which all pairwise 

contacts are considered) is NP-hard. So, TreeThreader employs nested graphs to describe 

contacts  with templates (like covariance model for RNA secondary structure analysis).  It 

outperforms other methods such as HHpred. 

 With “TreeThreader”, it takes about 2 seconds to align an average protein sequence with 

one template on an average single 2 GFLOPS CPU, so it needs about 27.7 hours to align it with 

all 50,000 templates and get the predicted structure.  Hence it takes about 22,196 years on a 

single CPU core to finish the prediction of all currently unknown protein structures. So even 

with TreeThreader, the quantity of CPU power  required to compute the large amount of 

protein sequences  is beyond the capacity of any computer center.  

The rest of the paper is organized as follows. Section 2 gives an introduction to the 

BOINC platform. Section 3 presents the computing model design of TreeThreader on BOINC 

platform. Section 4 gives details  of the implementation including the control program, results 

validation, locality scheduling, and job submission system. Section 5 presents the results and 

Section 6  the conclusions. 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

2. BOINC  

BOINC [4] (Berkeley Open Infrastructure for Network Computing) is a platform for  

volunteer computing. BOINC is being used for applications in physics, molecular biology, 

medicine, chemistry, astronomy, climate dynamics, mathematics, and the study of games. 

There are currently about 50 BOINC based projects and about  350,000 volunteer computers 

performing an average of over 9.1 PetaFLOPS [5]. 

2.1 BOINC Features 

BOINC harnesses heterogeneous  and untrusted computing resources, so it has  unique 

features compared to other  types of distributed computing.  

 BOINC provides high level transparency over heterogeneous platforms of different 

hardware and operating systems. 

 BOINC deals with distrusted personal computers  using redundant computing and 

validation. Validation is application specific, and only consistent results are considered to 

be valid. 

Running an application on  volunteer computing resources also imposes several 

limitations:  

 BOINC assumes no runtime environment on  volunteer computers, so applications should 

not rely on any dynamical libraries; therefore the application needs to be statically 

compiled.  

 The application runs at a low priority on  volunteer computers, so it is only suitable for 

computation with loose deadlines and application needs to support checkpointing of  long 

running tasks. 

 Public computers have limited Internet bandwidth, so the computation should not require a 

large amount of input/output data. 

 BOINC clients do not supports communicate between each other, so it is not suitable for 

distribution application which needs internal communication.  

TreeThreader software is written in C, can be compiled to be runtime environment 

independent with some effort.  The supports checkpoint.  The computation  is CPU intensive.  

The comparisons of a sequence to each template are independent , hence a computing task can 

be split into sub tasks and run on multiple hosts in parallel. So the TreeThreader software is a 

suitable application to run on  volunteer computing resources.  

2.2 BOINC Architecture  

As shown in Figure 1, the BOINC middleware consists of the server and client 

components, and the communication between the two sides is via XML over HTTP . The 

communication is always initiated by the client side, ie. , requesting jobs from the server side, 

downloading input files and uploading output files. There are several daemons running on the 

server side, including the feeder, scheduler, transitioner, validater and assimilater.  



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

The scheduler handles requests from BOINC clients. Each request includes a description 

of the host, a list of completed instances, and a request for additional work, expressed in terms 

of the time the work should take to complete. The reply includes a list of  jobs.  

The feeder streamlines the scheduler’s database access. It maintains a shared-memory 

segment containing 1) static database tables such as applications, platforms, and application 

versions, and 2) a fixed-size cache of unsent  jobs. The scheduler finds  jbos that can be sent 

to a particular client by scanning this memory segment.  

The validater examines sets of results and selects canonical results. It includes an 

application-specific result-comparison function. 

The assimilater handles newly-found canonical results. It includes an application-specific 

function which typically parses the result and inserts it into a science database. 

 

Figure 1: BOINC Software Architecture 

3. Computing Model Design 

The total input files (all existing protein templates) for a protein structure prediction 

computing task is about 5GB with 50,000 templates, and it takes about 28 hours to finish on a 

single CPU core. As discussed in section 2.2, computing on  volunteer resources requires a  

high ratio between CPU time and data transfer time and also a small amount of input/output 

data, so placing 5GB input data on a single host is impractical for BOINC. Fortunately, in 

protein structure prediction, the comparisons of a sequence against the templates are 

independent from each other, so the computing task can be split into small sub-tasks based on  

subsets of templates,  and the results of each sub-task can be merged together to construct the 

structure of the protein. 

Here 50,000 templates are split into 32 sub packages, with each package having about 

1,600 templates and a size of 50MB after compression, so on an average  volunteer host, it 

takes about 30 seconds to download one template package, and about 20 minutes of CPU time 

to process the comparisons. The corresponding results are omuch smaller , usually around 2MB 

for a package after compression, so the time taken to upload the results can be ignored.  

In this way, each computing task (predicting one protein sequence) is split into 32  

sub-tasks with each sub,task processing one template package. Each sub,task is a  job on 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

BOINC server, and the BOINC scheduler can distribute the 32 sub-tasks  to multiple hosts 

which request jobs. The results from each sub-task will be merged together by the Job 

Submission Interface when all the sub-tasks are finished. By splitting the computing task and 

distributing the sub-tasks on multiple hosts, the execution time of one computing task is 

significantly reduced. 

4. Implementation 

In order to port TreeThreader on BOINC, a few customizations needed to be done on the 

BOINC server side. 

4.1 Control Program 

On the BOINC client, the actual application such as TreeThreader needs to be able to 

communicate with the core client so the BOINC client can suspend/resume/abort the process 

and check the status of the process. BOINC provides a program called “Wrapper” which can 

run the other applications as child processes, and handles the communication between the 

applications and the BOINC client. 

 

 

Figure 2: TreeThreader Control Program tree 

 

As shown in Figure 2, a sequence prediction sub-task includes two functions:  running the 

TreeThreader software and  merging the results. Two programs are used for this purpose They 

are run as child processes and controlled by the BOINC Wrapper,. “Run_TreeThreader” sets up 

the necessary running environment, edits the configuration file, uncompresses the templates, 

and start the “TreeThreader” application with its input files. Upon the finish of 

“Run_TreeThreader”, “Merge_Results” scans the result files corresponding to the templates 

and compress the results which will later be uploaded by BOINC client to the server. 

4.2 Results Validation   

Several  factors [6] can lead to  inconsistent results on  volunteer computing resources: 

the heterogeneity of hardware and operating systems can produce discrepant results in float 

point calculation, and malicious owners of the hosts can  falsify the results. To address this 

problem, an application specific validater needs to be implemented to determine whether 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

results from replicated jobs agree with each other, and one of the consistent results will be 

marked as “canonical result” for this job.   

In the case of TreeThreader, it generates one result file corresponding to each template it 

uses to compare with the sequence, so each sub task produces the same quantity of result files 

as the quantity of templates it processes, and all the result files are compressed into one file and 

uploaded to the BOINC server. 

The result files are in plain text format, and do not have discrepancy over heterogeneous 

platforms, but uncompressing all the result files for every single sequence and doing a bitwise 

comparison is very time consuming, so  a very simple mechanism is used to validate the results: 

comparing the size of the compressed result files of a sequence. This is a very loose validation; 

however, post processing of the full results on another server will pick out the invalid results.  

4.3 Locality Scheduling 

When a host makes a request of jobs, BOINC scheduler [7] checks the shared memory 

which is managed by the BOINC feeder to decide what jobs match the request. BOINC 

scheduler takes general information such as estimated FLOPS, disk size, and memory size of a 

job into account to match the job request. 

 In TreeThreader, each sub-package of templates  corresponds to a sub-task of a sequence 

prediction and can be reused by another sub-task of another sequence. To save the bandwidth, 

template package files are marked as “sticky” on BOINC client, so they will not be removed by 

the BOINC client after being used by one sub-task so another sub-task can reuse it later. 

However, this still means if a host gets random sub-tasks from the scheduler, it will tend to 

“cache” all the template packages on the client disk eventually.  Therefore, the client  will use 

a large amount of storage and initial bandwidth to download the template packages. To solve 

this problem, a “locality scheduling” mechanism is implemented in the BOINC scheduler. 

 

 

Figure 3: TreeThreader Locality Scheduling 

 

As shown in Figure 3, when a BOINC client sends a job request to the scheduler, it 

includes  a list of the sticky files it stores The BOINC scheduler can then scan the available 

jobs in the share memory, and select the jobs which  use these sticky files as input data, and 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

combine  this with other matching information to decide what jobs could be sent to the client. 

For example, if client A indicates in the job request that it has template package file P1, P2 and 

P9, then the BOINC scheduler will  preferentially send jobs which require file P1, P2 and P9 to 

this client.    The initial number of template package files is determined by the number of 

parallel jobs allowed to be run on the client.  

4.4 Job Submission 

 

Figure 4: TreeThreader Job Submission Diagram 

 

The job submission system consists of 4 components as shown in Figure 4:   

1)  The Web Portal [8] from which scientists can submit protein sequences, check the 

process status and displays the structure of finished proteins [9]. 

2)  The backend of the Web Portal which verifies/preprocesses the sequence and 

submits valid sequences to the BOINC  server. 

3)  A set of remote job submission interfaces which enables users/applications to 

interact with BOINC server through HTTP . Five interfaces are provided: 

Batch_Submit which allows the client to upload a sequence to the BOINC server to 

generate a batch of jobs and returns the batch  ID for this sequence; Batch_Status 

which queries the status of a submitted batch; Batch_Abort which allows to abort a 

submitted batch; Batch_Retire which allows to retire a completed batch and remove 

all its associated files; Batch_Output which downloads the merged results of a 

finished batch. 

4)  A CGI program runs on BOINC server which responds to HTTP requests of remote 

job submission. Upon receiving a Batch_Submit request, the CGI program takes the 

sequence and creates a batch of 32 jobs based on the 32 template packages on BOINC 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

server. Upon receiving a Batch_Output request, the CGI program picks out all 

canonical results (results being validated) of the batch and compresses the results into 

one file for the client to download. 

5. Results 

5.1 Process Rate 

The TreeThreader application was ported and officially launched on the BOINC based 

volunteer project CAS@home [10] in November 2012.  As of August 2013, it has gained 3.5 

Million effective CPU hours from the  volunteer computing resources including home/office 

PCs and laptops as shown in Figure 5,  and it has finished predicting 27 thousand protein 

structures since its launch as shown in Figure 6 (a batch of jobs is equivalent to a protein 

sequence prediction).  

Both Table 1 and Table 2 show the current available and achieved resources from 

CAS@home project [11]. 

 

Figure 5: Effective CPU hours on CAS@home 

 



P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

Figure 6: Finished Protein sequences on CAS@home 

 

 Registered Active 

User 16,454 1,183 

Host 21,941 1,752 

CPU Cores 71,351 8,416 

Available FLOPS 174.7TeraFLOPS 22.78TeraFLOPS 

Table 1: Resource Statistics of CAS@home 

RAC(Average Credit/Day) 28,746 

Real Time FLOPS 1.27TeraFLOPS 

Project Total CPU Hours 13,698,551 

Table 2: Project Resources of CAS@home 

6. Conclusions  

 

Figure 6: A Predicted Protein Structure 

References 

[1] Anderson D P. BOINC: A system for public-resource computing and storage [C], Grid Computing, 

2004. Proceedings. Fifth IEEE/ACM International Workshop on. IEEE, 2004: 4-10. 

[2] Al-Lazikani B, Jung J, Xiang Z, et al. Protein structure prediction[J]. Current opinion in chemical 

biology, 2001, 5(1): 51-56. 

[3] Baker D, Sali A. Protein structure prediction and structural genomics [J]. Science Signalling, 2001, 

294(5540): 93. 

[4] BOINC, http://boinc.berkeley.edu/ 

[5] Anderson D P, Korpela E, Walton R. High-performance task distribution for volunteer computing [C], 

e-Science and Grid Computing, 2005. First International Conference on. IEEE, 2005: 8 pp.-203. 

http://boinc.berkeley.edu/


P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

P
o
S
(
I
S
G
C
 
2
0
1
3
)
0
3
7

 
 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it 

 

[6] Anderson D P, Reed K. Celebrating diversity in volunteer computing [C], System Sciences, 2009. 

HICSS'09. 42nd Hawaii International Conference on. IEEE, 2009: 1-8.  

[7] Anderson D P. Local scheduling for volunteer computing [C], Parallel and Distributed Processing 

Symposium, 2007. IPDPS 2007. IEEE International. IEEE, 2007: 1-8. 

[8] TreeThreader sequence submission, http://protein.ict.ac.cn/TreeThreader/ 

[9] TreeThreader protein structure display, 

http://protein.ict.ac.cn/TreeThreader/results.php?batchid=1832 

[10] CAS@home, http://casathome.ihep.ac.cn 

[11] CAS@home project statistics, http://casathome.ihep.ac.cn/cas_stats.html 

 

 

http://protein.ict.ac.cn/TreeThreader/
http://casathome.ihep.ac.cn/
http://casathome.ihep.ac.cn/cas_stats.html

