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1. Introduction

The extensive work on the collective nuclear potential landscape done bymeans of the microscopic-

macroscopic models or by other more modern methods is in stark contrast to the minimal work done

on the inertia (viscosity) tensors. Yet classical and quantum dynamics requires the knowledge of

both the potential energy and the inertia tensor in order to define the true evolution of the system,

or, semiclassically, its trajectory in collective space.

In fact, it is worth reflecting that of all the potential energy landscape, only the stationary

points (i.e. - minima, maxima, saddle points) are invariant under a generic coordinate transfor-

mation. Even downhill may become uphill and vice versa. The only way to make use of the rest

of the potential energy surface is to consider it in conjunction with the associated tensors men-

tioned above. Only then can the classical and semiclassical trajectories be determined through the

extremization of the action integral.

The presence of pairing in nuclei also affects the dynamics. Normally the pairing energy of

a nucleus is evaluated in its ground state and is taken as a static constant as opposed to it being

evaluated along each point in a trajectory. It is shown in this presentation that the effect of a

dynamical pairing energy greatly influences nuclear dynamics.

This work is done in the context of spontaneous fission, where a dynamical pairing energy can

influence both the dynamics of tunneling under the fission barrier along with the evolution of the

system beyond the barrier. Thus the rate of spontaneous fission is controlled by both the height of

the fission barrier and the effective mass of the collective mode undergoing fission. An interesting

application of this effect is to consider the relative rate of spontaneous fission of an actinide nucleus

in its ground state versus a shape isomeric state.

2. The role of pairing

2.1 The potential energy

Pairing is typically included in the potential energy calculations. However the gap parameter

∆ is calculated by requiring the expectation value of the pairing Hamiltonian H to be minimum

∂ 〈H(∆)〉

∂∆
= 0. (2.1)

This is the gap equation and can be solved for ∆, which however, is a static value! Dynamically ∆

can be very different.

2.2 The inertia

The inertia is also strongly pairing dependent. An estimate from the cranking model [1] gives

the effective mass B of a collective motion as

B= h̄2

〈

(

∂εk
∂α

)2
〉

g

3∆2
≃

K

∆2
. (2.2)

Here g is the doubly degenerate single particle level density and K is approximated to be constant.

For this approximation the uniform model is used, where it is presumed that the single particle

states are uniformly distributed. But, what value of ∆ should one use?
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2.3 The action

The solution to this quandary is to use the action, where extremization with respect to ∆ should

give the correct and relevant value of ∆. In order to do so, we calculate the ∆ dependence to second

order in ∆ starting with

V (α ,∆)≡ 〈H〉= 2∑v2k(εk−λ )−G
[

∑ukvk
]2
. (2.3)

The second order term in the expansion is

1

2

∂ 2〈H〉

∂∆2

∣

∣

∣

∣

∆=∆0

=
1

2
∆2
0∑E−3

k −
1

4
∆4
0G

[

∑E−3
k

]2
(2.4)

The uniform model can be applied to simplify this equation to

1

2

∂ 2〈H〉

∂∆2

∣

∣

∣

∣

∆=∆0

= g

(

1−
1

2
gG

)

≈ g. (2.5)

Hence, the potential energy expanded to second order in ∆ is

V (α ,∆) =V0(α)+g(∆−∆0)
2. (2.6)

For the inertia we use the form

B=
K

∆2
+β , (2.7)

where the K/∆2 comes from the cranking model [1] and β is the irrotational limit of the inertia.

The action can now be written as

S=
∫ b

a
dα

[

2

(

K

∆2
+β

)

{

V0(α)−E+g(∆−∆0)
2
}

]1/2

. (2.8)

The gap parameter along the trajectory must be determined dynamically. Every point along

the trajectory thus satisfies

d

d∆

[(

K

∆2
+β

)

{

V0(α)−E+g(∆−∆0)
2
}

]

= 0. (2.9)

This implies that the gap along each point of the trajectory is

∆

∆0

= 1+
V0(α)−E

g∆2
0

, (2.10)

in the limiting case of β = 0.

3. The magic world of superfluidity

The use of the uniform model allows one to appreciate the surprising effects of dynamical

pairing. The derived equations presented here are only valid for values of ∆ sufficiently close to ∆0.

However, one can appreciate the main qualitative conclusion even from this very crude equation.
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3.1 The “ordinary” world

Consider the effect of dynamical pairing on a collective motion with a positive kinetic energy

[2]. As one tries to inject kinetic energy into the collective degree of freedom, the system reacts

in such a way as to decrease the pairing correlation. This phenomenon, which is analogous to

the Coriolis antipairing effect, depends only upon the sign of ∂B/∂∆ and it is a very fundamental

property of the classical equations of motion.

If one calls the actual kinetic energy Ekin = E−V (α ,∆) and the expected kinetic energy E0
kin =

E−V0(α ,∆0) one obtains for the ratio of the two quantities

Ekin

E0
kin

= 1−
E0
kin

g∆2
0

=
∆

∆0

. (3.1)

This ratio, as one can see, decreases continuously with increasing E0
kin. The actual kinetic

energy Ekin first increases with E
0
kin and then decreases. The maximum occurs at:

dEkin

dE0
kin

= 1−2
E0
kin

g∆2
0

= 0, (3.2)

or at

E0
kin =

1

2
g∆2

0, (3.3)

where Ekin assumes the value:

Ekin =
1

2
E0
kin, (3.4)

and

∆=
1

2
∆0. (3.5)

For larger values of E0
kin the true kinetic energy decreases. Equation 3.1 is shown in figure 1.

Again, one must be very cautious in using these results for values of ∆ much different from ∆0,

both because of the quadratic expansion and because of the poor knowledge of the dependence of

B(α ,∆) upon ∆.

In the above treatment one has assumed that ∆ acts as a parameter which adjusts adiabatically

without having any kinetic energy term associated with it. One may improve the picture by con-

sidering ∆ to be a dynamical variable. In this case, B(α ,∆) becomes a 2×2 matrix and the action

becomes

S=
∫ b

a
dα

[

2(E−V (α ,∆))
{

Bαα +2Bα∆∆α +B∆∆∆
2
α

}]1/2
, (3.6)

where ∆α is the first derivative of ∆ with respect to α . The Euler equation now becomes a differ-

ential equation. Because, at least in the uniform model,

Bαα ≫ 2Bα∆∆α and Bαα ≫ B∆∆∆
2
α , (3.7)

the previously developed formulas still hold qualitatively. The overall qualitative result of this ex-

ercise is the following. A collective mode cannot bear much more kinetic energy than an amount of

the order of the condensation energy 1
2
g∆2

0, without dramatically decreasing the pairing correlation.

In the descent from saddle to scission, as the system starts increasing its velocity, pairing

should quickly decrease to the point where quasiparticle excitations become very likely due to
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Figure 1: The solid line shows how loading energy into a collective mode does not necessarily increase the

kinetic energy of the motion. The dashed line is if all the injected energy goes to kinetic energy. The energy

is in units of 1/g∆2
0.

their decreased pairing gap energy. The creation of quasiparticles should further decrease pairing

through "blocking", thus generating a catastrophic breakdown of the pairing correlation.

In conclusion it appears that:

1. A dynamical treatment of the pairing correlation must be used when dealing with nuclear

collective motion;

2. The reaction of the pairing correlation to the collective velocity depends critically upon sign

and magnitude of ∂B/∂∆;

3. A negative ∂B/∂∆ implies a decrease in pairing as the collective velocity increases, possibly

leading to a catastrophic breakdown of the pairing correlation;

4. Any attempt to determine the degree of viscosity in the descent from saddle to scission should

be preceded by a careful evaluation of Bα∆(α ,∆).

3.2 The classically forbidden world

The quantum world is not limited to positive kinetic energies. Pairing also affects a system

tunneling through a barrier [3]. Before penetrating the barrier, at the classical turning point given

by the equation V0(α)− E = 0, the gap parameter is ∆ = ∆0: in other words the solution for

∆ is the same as that given by the gap equation. As the system dives into the barrier, the least

action principle tends to decrease the inertia by increasing ∆. The gap parameter is prevented from

increasing indefinitely by the restoring force originated by the potential energy as in equation 2.6.

Since in order to obtain equation 2.10 β has been set equal to zero, the gap parameter given by

equation 2.10 is somewhat overestimated. Still, one can see that the effect is indeed very large.

By using the following round numbers: g = 7 MeV−1 , ∆0 = 1 MeV, and V0(α)−E = 7 MeV,

5



P
o
S
(
B
o
r
m
i
o
 
2
0
1
3
)
0
7
1

Nuclear Dynamics in the Superfluid Regime Luciano G Moretto

1

1.2

1.4

1.6

1.8

0.3 0.4 0.5 0.6 0.7

α

∆

∆0

Figure 2: Enhancement of the gap parameter in the penetration of the fission barrier.
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Figure 3: The effective fission barrier V ∗ is lower than the fission barrier V with no dynamical pairing.

one obtains ∆= 2∆0 for the enhancement under the top of the barrier. The effect of such a pairing

increase can be incorporated into an effective potential V ∗:

V ∗(α)−E =
V0(α)−E

1+(V0(α)−E)/g∆2
0

. (3.8)

Again, by using the above mentioned parameters, it appears that, the deeper the system dives

into the barrier, the more the effective barrier is reduced: in particular by using the numerical values

of the parameters mentioned above, the height of the effective barrier is reduced by a factor of two

with respect to the true barrier. Again, although equation 3.8 is overestimating the effect, it is

clear that such a dramatic reduction of the barrier must have a substantial effect on the spontaneous

fission half-lives.
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Figure 4: A schematic potential for fission barrier with an isomeric state. The arrows are to emphasize how

the dynamical pairing effect is different tunneling from either.

In figure 2, a plot of ∆/∆0 is shown as a function of α . This calculation applied to the uniform

model has been performed by substituting equation 2.7 and equation 2.3 into equation 2.8, and the

following parameters have been used: B = 1666∆2
0/∆

2+ 225h̄2 MeV−1, ∆0 = 0.775 MeV, g = 7

MeV−1,V = 6+ 1
2
×300(α−α0)

2 MeV and E = 0. These quantities are expected to be realistic for

an actinide nucleus. In figure 3, the effective potential energy is shown as a function of deformation.

The overall features are still the same as those estimated by equations 2.10 and 3.8. A limitation of

the above treatment is related to the fact that ∆ should be considered as a true dynamical variable

instead of a simple parameter. In other words, one should account for the kinetic energy associated

with ∆ as well as for the potential energy. The same arguments hold as for the classically allowed

region and it is seen that equations 2.10 and 3.8 as well as the numerical results presented in figures

2 and 3 should be reasonably accurate.

An elegant verification of the above enhancement of barrier penetrability could be obtained

by comparing the spontaneous fission half life for the ground state and the shape isomer in ac-

tinides. The much greater penetration enhancement in the ground state spontaneous fission should

be readily observed.

4. Conclusion

Dynamics affects pairing dramatically. The gap parameter, typically calculated by minimizing

the expectation value of the Hamiltonian, is relevant only to stationary systems.

When dynamical situations are considered, such as the saddle to scission descent, or the fission

barrier penetration, the gap parameter must be determined by examination of the action.

The dynamical effects associated with dynamical pairing are major and need fuller attention.
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