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Figure 1: (Color online) The conjectured phase diagram of strong interactions [4].

1. Introduction

A phase diagram displays information on the structure of thematter as it manifests various
degrees of freedom under different external conditions. One of the most widely studied phase
diagram in science is that of water. In this case the underlying interaction is electromagnetic, one
of the four basic interactions that occur in nature. The goalof high-energy nuclear collisions is to
establish a similar phase diagram for a system whose underlying interaction is due to the strong
force. The phase diagram of strong interaction on one hand displays the interplay of the chiral and
center symmetry as a function of quark masses [1], on the other hand can be represented as a graph
which shows variation of temperature (T) versus the chemical potential (µ) [2] associated with
conserved charges like baryon number (B), electric charge (Q) and strangeness number (S). The
later is the one which can be experimentally studied.

In the heavy-ion colliding systems, it is found that values of µQ and µS are small [3] and
hence the phase diagram of strong interaction reduces to a two dimensional graph ofT vs. µB as
shown in Fig. 1. Further, the analysis of particle yields in the heavy-ion collisions and their com-
parison to statistical models suggests thatT andµB vary in opposite manner with center of mass
energy (

√
sNN) at the chemical freeze-out [5]. TheµB decreases with

√
sNN while T increases with

increase in
√

sNN [6]. Thus changing the
√

sNN one can vary the two axes of phase diagram,T
andµB, and experimentally get access to a large part of the phase space. The Beam Energy Scan
(BES) program has been designed based on this idea for the study of the phase structure of the
quantum chromodynamic (QCD) phase diagram [7, 8]. The phasediagram in Fig. 1 shows the
experimentally accessible parts using heavy-ion collisions at the Large Hadron Collider (LHC),
Relativistic Heavy Ion Collider (RHIC) and through future experiments (like CBM at GSI and
NICA at JINR). The phase diagram displays a rich phase structure, however the experimentally ac-
cessible part corresponds to some of the following distinctstructures: de-confined phase of quarks
and gluons, hadronic phase, critical point, crossover lineand a crossover at lowµB. We discuss in
the sections below the progress towards establishing thesephase structures, both theoretically and
experimentally.
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Figure 2: (Color online) Left panel: chiral susceptibility versus 6/g2 (g is the gauge coupling) [9]. Middle
panel: Hydrodynamical calculation of identified hadron transverse momentum compared to experimental
data from the ALICE collaboration, and Right panel: Root-mean-square anisotropic flow co-efficients as a
function of transverse momentum compared to experimental data by the ATLAS collaboration [10].

Table 1: Crossover temperature atµB = 0 MeV along with the references.

Observable Transition temperature Ref

χψ̄ψ 151(3)(3) MeV [11]

χψ̄ψ 154(9) MeV [12]

χs 175(2)(4) MeV [11]

L 176(3)(4) MeV [11]

Baryon correlations 175(1)(7) MeV [13]

2. Crossover and Crossover temperature

2.1 Crossover

QCD calculations on lattice at high temperature andµB = 0 MeV have established the quark-
hadron transition to be a crossover [9]. Figure 2 shows the lattice chiral susceptibilityχ(Ns,Nt) =
∂ 2/(∂m2

ud)(T/V)· logZ, wheremud is the mass of the light u,d quarks,Ns is the spatial extension,
Nτ euclidean time extension, andV the system volume. The susceptibility plotted as a function
of 6/g2 (g is the gauge coupling andT grows with 6/g2) shows a pronounced peak around the
transition temperature (Tc). The peak and width are independent of volume (varied by a factor 8)
thereby establishing the transition to be an analytic cross-over [9]. For a first-order phase transi-
tion the height of the susceptibility peak should have been∝ V and the width of the peak∝ 1/V,
while for a second-order transition the singular behaviourshould have been∝ Vα , α is a critical
exponent. Using the crossover equation of state for the quark-hadron transition in a hydrodynamic
based model, the experimental data on invariant yields of charged hadrons and various order az-
imuthal anisotropy as a function of transverse momentum at LHC are nicely explained (shown in
Fig 2) [10]. Lending indirect support to the transition being a crossover at smallµB.

2.2 Crossover temperature

The point of sharpest change in temperature dependence of the chiral susceptibility (χψ̄ψ ),
the strange quark number susceptibility (χs) and the renormalized Polyakov-loop (L) are used to
estimate the crossover temperature in the lattice calculations. There is a clear agreement between
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Table 2: Observables reflecting quark-gluon phase (QGP) formation in heavy-ion collisions at RHIC and
LHC along with the references.

Observable Observation Remark Reference

Nuclear modification factor < 1 at highpT for hadrons [28, 29, 30]

Temperature > 300 MeV direct photons [31]

Strangeness enhancement > 1 crucial role byφ mesons [20]

Constituent quark scaling for hadrons and nuclei elliptic flow [21, 22]

Dynamical charge correlations observed same and opposite charges [33, 34]

Quarkonia suppression observed J/Ψ andϒ [25, 32]

various lattice QCD estimates of chiral crossover temperature usingχψ̄ψ [11, 12]. The observables
(χs andL) that provide important insights into deconfining aspects of the crossover shows a slightly
higher transition temperature. But with a width of around 15MeV in temperature estimates, it is
difficult to make a concerte statement on the difference between deconfinement and chiral crossover
temperatures. Moreover there are unresolved discussions on the establishment of Polyakov loop
expectation and strange quark number susceptibilities to critical behaviour in the light quark mass
regime [12]. The crossover temperature situation is summarised in the table 1.

3. Quark-Gluon Phase

The results from heavy-ion collisions at relativistic highenergies have clearly demonstrated
the formation of a de-confined system of quarks and gluons at RHIC [14, 15, 16, 17, 18] and
LHC [19]. The produced system exhibits copious production of strange hadrons [20], shows sub-
stantial collectivity developed in the partonic phase [21,22], exhibits suppression in high transverse
momentum (pT ) hadron production relative top+p collisions [23, 24], suppression in quarkonia
production relative top+p collisions [25], and small fluidity as reflected by a small value of vis-
cosity to entropy density ratio (η/s) [26]. All these at temperatures and energy densities much
larger than predicted by lattice QCD calculations for a quark-hadron transition. Some of these
clear signatures are given in the table 2.

Here we only discuss one observable called the nuclear modification factor (RAA ). RAA is de-
fined as dNAA/dηd2pT

TABdσNN/dηd2pT
, here the overlap integralTAB=Nbinary/σ pp

inelastic with Nbinary being the num-

ber of binary collisions commonly estimated from Glauber model calculation anddσNN/dηd2pT

is the cross section of charged hadron production inp+p collisions. RAA value of less than one is
attributed to energy loss of partons in QGP and phenomenon isreferred to as the jet quenching in
a dense partonic matter [27]. It is one of the established signature of QGP formation in heavy-ion
collisions.

Figure 3 shows theRAA of various particles produced in heavy-ion collisions at RHIC and
LHC. In Fig. 3(a), we observe that the valuesRAA < 1 and at RHIC are higher compared to those
at LHC energies up topT < 8 GeV/c [29, 30] . In Fig. 3(b), we observe that the nuclear modification
factors ford+Au collisions at

√
sNN = 200 GeV [35] andp+Pb collisions at

√
sNN = 5.02 TeV [36]

are greater than unity for thepT > 2 GeV/c. The nuclear modification factor value inp(d)+A
collisions not being below unity strengthens the argument (from experimental point of view) that a
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Figure 3: (Color online) (a) Nuclear modification factorRAA of charged hadrons measured by ALICE [29]
and CMS [30] experiments at midrapidity. Also shown theRAA of charged hadrons at midrapidity measured
by STAR [35] andRAA of π0 at midrapidity measured by PHENIX [28]. (b) Comparison of nuclear modifi-
cation factor for charged hadrons versuspT at midrapidity for minimum bias collisions ind+Au collisions
at

√
sNN = 200 GeV [35] andp+Pb collisions at

√
sNN = 5.02 TeV [36]. (c) The nuclear modification fac-

tor versuspT for isolated photons in central nucleus-nucleus collisions at
√

sNN = 200 GeV [37] and 2.76
TeV [38]. Also shown are theRAA of W± [39] andZ bosons [40] at LHC energies. The boxes around the
data denotepT -dependent systematic uncertainties. The systematic uncertainties on the normalisation are
shown as boxes atRAA = 1.

hot and dense medium of color charges is formed in A+A collisions at RHIC and LHC. In Fig. 3(c),
we show theRAA of particles than do not participate in strong interactionsand some of them are
most likely formed in the very early stages of the collisions. These particles (photon [37, 38],
W± [39] andZ [40] bosons) have aRAA ∼ 1, indicating that theRAA < 1, observed for hadrons in
A+A collisions, are due to the strong interactions in a densemedium consisting of color charges.

4. Crossover line

4.1 Theory estimates

The quark-hadron transition atµB = 0 is a crossover [9] and one of the important aspects
of the phase diagram is to trace out the crossover temperature as we increaseµB. Besides the
actual value of the curvature of the crossover line a particularly interesting question is whether the
transition becomes weaker or stronger asµB grows (does it lead to a real phase boundary ?) and
how close it is to the chemical freeze-out line. A recent lattice estimate is shown in Fig. 4 [41]. Two
crossover lines are defined with two quantities, the chiral condensate and the strange quark number
susceptibility. The width of the bands represent the statistical uncertainty ofTc(µ) for the givenµ
coming from the error of the curvature for both observables.The dashed line is the freeze-out curve
from heavy ion experiments [42]. It appears that the freeze-out line is quite close to the transition
line for a large range of values ofµB. The right panel of Fig. 4 shows the estimates of chemical
freeze-out temperature (Tch) andµB using a statistical model from the RHIC BES program [43].
One observes interesting dependence ofTch vs. µB unfolding at lower beam energies.
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Figure 4: (Color online) Left panel: The crossover line between the quark-gluon and hadronic phases
is represented by the coloured area (blue and red correspondto the transition regions obtained from the
chiral condensate and the strange susceptibility, respectively) [41]. Right panel: Variation ofTch with µB for
different energies and centralities. The curves representthe theoretical calculations.

4.2 Turn-off of QGP signatures

An experimental way to demonstrate the quark-hadron transition is to show the turn-off of
QGP signatures (like those discussed in section 3) as the collision energy is dialed down. This
interesting test is being carried out at the BES program in RHIC. Two such results are shown
in Fig. 5. For collision energies around 11.5 GeV the nuclearmodification factor forK0

S mesons
becomes> 1 atpT > 2 GeV/c, whereas it gradually goes below unity for higher beam energies [44].
The baryon-meson splitting of azimuthal anisotropy parameter v2 (which is the basis for the claim
of partonic collectivity at RHIC) reduces as the beam energyis dialed down and vanishes for√

sNN = 11.5 and 7.7 GeV [45]. These are an experimental indicationthat for
√

sNN = 11.5 GeV
and below hadronic interactions dominate as signatures associated with QGP phenomena seem
smoothly getting turned-off.

5. Critical Point

Several QCD based models predict the existence of an end point or critical point (CP) at high
µB for the first order phase transition in the QCD phase diagram.However the exact location
depends on the model assumptions used [46]. Given the ambiguity in predictions of CP in models,
studies on lattice was expected to provide reliable estimates [47]. However lattice calculations at
finite µB are difficult due tosign problem. There are several ways suggested to overcome this issue.
(i) Reweighting the partition function in the vicinity of transition temperature andµ = 0 [48], (ii)
Taylor expansion of thermodynamic observables inµ /T aboutµ = 0 [49] and (iii) Choosing the
chemical potential to be imaginary will make the fermionic determinant positive [50]. The first two
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Figure 5: (Color online) Left panel: Nuclear modification factor forK0
S mesons as a function of trans-

verse momentum for various
√

sNN [44]. Right panel: Azimuthal anisotropy parameter,v2 as a function of
transverse mass (mT ) minus the mass of the hadrons for various

√
sNN [45].

Figure 6: (Color online) Left panel: Estimates of position of critical point from various lattice QCD
calculations [51, 52, 53]. Right panel:κσ2 for net-proton distributions as a function of

√
sNN in RHIC BES

program [54]. Also shown are the projected statistical error in 2nd phase of BES program.

methodologies yield an existence of CP, whereas the third procedure gives a CP only when the first
co-efficient in the Taylor expansion of generic quark mass onthe chiral critical surface (mc) as a

function ofµ /T (mc(µ)
mc(0)

= 1+∑k=1 ck

(

µ
πTc

)2k
) is positive. The lattice calculations which yield a CP

on phase diagram are shown in Fig. 6 [51, 52, 53]. However these calculations have to overcome
some of the common lattice artifacts like, lattice spacing,physical quark masses, volume effect and
continuum limit extrapolation.

In the experimental side, the characteristic signature of CP is large fluctuations in event-by-
event conserved quantities like net-charge, net-baryon number and net-strangeness. The variance
of these distributions (〈(δN)2〉) are proportional to square of the correlation length (ξ ). The fi-
nite size and finite time effects attained in high energy heavy-ion collisions, limits the value of
theξ achieved in the collisions, thereby making it extremely challenging to measure in the experi-
ments. Motivated by the fact that non-Gaussian features in above observables increase if the system
freezes-out closer to QCP, it has been suggested to measure higher moments (non-zero skewness
and kurtosis indicates non-Gaussianity) of net-charge or net-baryon number distributions. Further
it has been shown that higher moments (〈(δN)3〉 ∼ ξ 4.5 and〈(δN)4〉 ∼ ξ 7) have stronger depen-
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dence onξ compared to variance and hence have higher sensitivity [55,56, 57]. In addition the
moments are related to susceptibilities [58]. Motivated byall these, experiments are studying the
variableκσ2 of net-proton distributions (a proxy for net-baryon), to search for the CP. Theκσ2

will be constant as per the CLT and have monotonic dependencewith
√

sNN for non-CP scenar-
ios. However as it is related to the ratio of baryon number susceptibilities in QCD models:κσ2 =

χ(4)
B

χ(2)
B /T2

[59], close to CP it is expected to show a non-monotonic dependence on
√

sNN. Preliminary

experimental results onκσ2 value for net-proton distributions measured in RHIC BES program is
shown in right panel of Fig. 6 [54]. Interesting trends are observed indicating CP if exists in the
phase diagram, have to be below

√
sNN = 39 GeV [60].

6. Summary

Significant progress has been made towards establishing theQCD phase diagram. From the
QCD calculations on lattice it is now established theoretically that the quark-hadron transition at
µB = 0 MeV is a crossover. This is indirectly supported by the experimental data, as models
using the lattice based equation-of-state explain variousmeasurements at RHIC and LHC. Lattice
QCD calculations are in agreement that the chiral crossovertemperature is around 154 MeV. Other
observables of quark-hadron crossover give a slightly higher values of crossover temperature with
large uncertainties.

High energy heavy-ion collision experiments have seen distinct signatures which suggest that
the relevant degrees of freedom at top RHIC and LHC energies in the initial stages of the col-
lisions are quark and gluons and the system quickly approaches thermalization. The underlying
mechanism for the fast thermalization is currently under study. Dialling down the beam energies to
11.5 GeV and below leads to a smooth turning-off of the QGP signatures, indicating that hadronic
interactions dominate. These observations in turn furthersupport the formation of partonic mat-
ter at higher energy collisions. Lattice QCD calculations of the crossover line indicates that they
are close to freeze-out line for a substantial part of the phase diagram. The experimental mea-
surements of freeze-out parameters in RHIC BES program reveals interesting temperature versus
baryonic chemical potential dependences at lower beam energies.

Most calculations on lattice continue to indicate the possible existence of critical point forµB

> 160 MeV, this possibility have not been ruled out from the data at RHIC. The exact location is not
yet known unambiguously. The experimental measurements though encouraging are inconclusive.

New phase structures are being proposed, like the existenceof a quarkyonic phase aroundµB

values corresponding to FAIR energies [61]. This is in addition to the confined and de-confined
phases. The matter in such a phase is expected to have energy density and pressure that of a gas
of quarks, and yet is a chirally symmetric confined matter. Baryon-Baryon correlations to look for
nucleation of baryon rich bubbles surrounded by baryon freeregions could be a signature of such a
phase. A summary of the status of QCD phase diagram studies intheory and experiments is given
in Table 3.

Acknowledgement: We thank Sourendu Gupta, Lokesh Kumar andNu Xu for careful reading
of the manuscript. Financial support is obtained from the DST Swarna Jayanti Fellowship.
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Table 3: QCD phase structure: Theory and Experiment status.

Phase structure Theory Experiment Remark

De-confined phase Yes Yes RHIC and LHC

Cross over Yes Indirectly µB ∼ 0 MeV

Crossover temperature Yes Yes µB ∼ 0 MeV

Crossover line Uncertain Indications RHIC BES

Critical Point Uncertain Inconclusive µB > 200 MeV

QGP properties Progress Progress Temperature, density,η/s

Hadronic phase properties Progress Progress Freeze-out dynamics

New phases Proposed Lack of proper observables Quarkyonic phase
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