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1. Introduction

Strongly interacting matter is expected to posses a rich phase structurartitular, com-
pressed baryonic matter may exhibit a first-order phase transition tts$tgarp to a certain crit-
ical temperature [1] and experimental efforts are underway to searcévidence of this phase
transition and the associated critical end point [2, 3, 4].

For these endeavors to be successful, it is important to identify obserstibcts that may
serve as signals of the phase structure. This is a challenging task ddbausolliding system
is relatively small, non-uniform, far from global equilibrium, and rapidly leiy. Therefore, to
understand how the presence of a phase transition may manifest itself kp#mneental observ-
ables, it is necessary to carry out dynamical simulations of the collisions wiithb$e transport
models.

Many numerical simulations of high-energy nuclear collisions have empidgadior viscous
fluid dynamics which has the important advantage that the equation of st&g4ppears explic-
itly. The focus up to now has mainly been on bulk observables and theindepee on a softening
of the EoS. For this purpose, the instabilities associated with a first-ordseghansition were
usually removed by means of a Maxwell construction, thereby ensurindptitamatter remains
mechanically stable throughout the expansion.

However, when a first-order phase transition exists, a low-densityrammhfihase (a hadronic
resonance gas) may coexist thermodynamically with a high-density deedndflrase (a baryon-
rich quark-gluon plasma) and, consequently, bulk matter prepared ahed&ate densities would
be unstable and seek to separate into the two coexisting phases. In a cotision, when the
dynamical evolution drives the bulk density into the phase coexistencenregminstabilities will
be triggered. In particular, the spinodal instabilities [5, 6, 7, 8, 9] maggda a non-equilibrium
evolution that in turn may generate observable fluctuations in the baryaityl€r0, 11, 12, 13]
and the chiral order parameter [14, 15]. Furthermore, nucleation aplldoformation may also
contribute towards the phase separation process.

In order to ascertain the degree to which these mechanisms may manifestitiesritsactual
nuclear collisions, we have performed numerical simulations with finite-density diynamics,
incorporating a gradient term in the local pressure [18]. This refineeranlates the finite-range
effects that are essential for a proper description of the phase transitisics [5, 6, 8, 16]. In
particular, the gradient term ensures that two coexisting bulk phaseswdlap a diffuse interface
and acquire an associated temperature-dependent tension. Furtheofri@y importance to the
present study, the gradient term also causes the dispersion relatithve foollective modes in the
unstable phase region to exhibit a maximum, as is a characteristic featunearfaglecomposition
[5]. Thus we employ a transport model that has an explicitly known twe@lkguation of state
and that treats the associated physical instabilities in a numerically reliable manne

2. The Equation of State

In order to obtain a suitable equation of state, we employ the method developed. if8].
Thus we work (at first) in the canonical framework and, for a giVenve obtain the free energy
density fr(p) in the phase coexistence region by performing a suitable spline betweeneato id
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Figure 1: The growth of harmonic density undulations inside the sg@hoegion as obtained with standard
ideal fluid dynamics, shown by the symbols for various valokthe wave numbek, together with the
resulting fits to the expected analytical form (3.5), showrhe continuous curves.

ized systems (either a gas of pions and interacting nucleons or a bag n§glod quarks) held at
that temperature. In Ref. [8] the focus was restricted to subcritical texyyes, T < T, So for
eachT the spline points were adjusted so the resultifgp) would exhibit a concave anomaly,
i.e.there would be two densitiep; (T) andp,(T), for which the tangent ofr (p) would be com-
mon. This ensures phase coexistemneethe chemical potentials matciy (1) = ur(p2), because
tr(p) = dp fr(p), and so do the pressurgs;(p1) = pr(p2), becauser(p) = pr(p)p — fr(p).
Ref. [18] extended the equation of stateTta> Tt by using splines that are convex, as is char-
acteristic of single-phase systems. After having thus construgtgy) for a sufficient range of
andp, we may obtain the pressure, as well as the energy desidip) = fr(p) — Tor fr(p), by
suitable interpolation and then tabulate the equation of spgte, p), on a convenient Cartesian
lattice.

3. Fluid Dynamical Clumping

For our present investigation, we describe the evolution of the collidingsyby ideal fluid
dynamics, because dissipative effects are not expected to play avdewk for the spinodal
clumping [16]: Although the inclusion of viscosity generally tends to slow tleevgn, the dissi-
pative mechanisms responsible for the viscous effects also lead to meliction which has the
opposite effect and also enlarges the unstable region (from the isierttvdpe isothermal bound-
ary).

The basic equation of motion in ideal fluid dynamics expresses four-momemtuservation,
dyTH = 0, where the stress tensor is given by

TH (%) = [p(x) + €U (x)u”(x) — p(x)g*"* , 3.1)

whereut(x) is the four-velocity of the fluid. When taking account of the baryon curoen-

sity, N¥(x) = p(x)uH(x), the basic equation of motion is supplemented by the continuity equation,
duNH = 0. These equations of motion are solved by means of the code SHASTA[dFjch the
propagation in the three spatial dimensions is carried out consecutively.
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Figure2: (a): The baryon density distribution in the transverse @@tz = 0) at timet = 2.5 fm of a single
event with the Maxwell constructed equation of state (b)e Baryon density distribution in the transverse
plane (atz= 0) at timet = 2.5 fm of the same event as in (a), this time with the unstablaop of state.

As mentioned above, a proper description of spinodal decompositiomesdjuat finite-range
effects be incorporated [5, 6]. Therefore, following Refs. [8, 1} write the local pressure as

P(r) 12P(r) , (3.2)
Ps Ps

where we recall thapo (&, p) is the equation of state, the pressure in uniform matter characterized
by £ andp. With ps = 0.153/fm? being the nuclear saturation density agek my s the associated
energy density, the gradient term is normalized such that its strength isrdently governed by

the length parametetr, which we will set toa = 0.033 [18] for the following results.

Uniform matter inside the spinodal region (whege< 0) is mechanically unstable and density
ripples of wave numbek will be amplified at a ratei(p,€). The spinodal growth rates can be
extracted by following the time evolution of small harmonic perturbations of tmifoatter. Thus,
imposing periodic boundary conditions, we consider initial systems of time for

P(r) = po(&(r),p(r)) —a%s

p(r)=p+0p(0)sin(kx) , (r) =&+ dg(0)sin(kx) , (3.3)

where(p, €) lies inside the spinodal phase region and the amplitdgg8) andde(0) are suitably
small. Because the frequency is purely imaginaoy,= +iy, the early time evolution of the
amplitudes will consist of growing and decaying exponentials having egeights (because the
initial state (3.3) is prepared without any flow) [19],

0p(t) =~ 0p(0)coshit) , d&(t) ~ d&(0) cosh{wt) , (3.4)

and it is then straightforward to extract the rgtdrom the calculated amplitude growth.

This is illustrated in figure 1 for the phase poiit, €) = (6ps, 10¢s), which lies well inside
the spinodal region, and usirigp(0),5€(0)) = (0.1ps,0.2¢5). The subsequent time evolution is
obtained with ideal fluid-dynamics (without the gradient term for this illustratéord the Fourier
components of the density are extracted. The resulting time-dependent aexdipy(t) are then
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Figure 3: Density difference in the transverse planezat0) at timet = 2.5 fm of the events displayed in
figure 3. The contour separates regions where the densithaneed from regions where it is depleted.

fitted with the analytical form (3.4). As the figure brings out, the expectad feindeed produced,
indicating that the numerical propagation of the unstable system is reliable.

4. Cluster Growth

In the present scenarios, spatial irregularities are present alredldy initial state, whereas
the fluid-dynamical propagation does not generate any spontanectsifians in the course of the
evolution (such fluctuations are generally produced at finite temperdf20Fbut this refinement
has not yet been incorporated into the fluid-dynamical transport tretgrabnuclear collisions).

To estimate the effect of the non-equilibrium phase transition we createnbleseof initial
states for different beam energies of collisions of lead nuclei using tREVID transport model
[21, 22, 23]. For any given event, and at any given time, parts ofyb®s may lie within the
unstable or metastable region, and local density irregularities may then becoptiGed, whereas
the rest of the matter is situated in a stable phase region where irregularitieoterode. In
order to ascertain the effect of those instabilities, we also carry owdsfmonding simulations with
the one-phase Maxwell partner equation of state which contains no instahlittes otherwise
identical.

The difference in the density evolution is illustrated in figures (2a) and (Both baryon
density distributions, (a) and (b), are extracted after the same fluid dyakewa@ution timet = 2.5
fm and from identical initial conditions. While in figure (2a) we used the Malkwonstructed
eqguation of state, (2b) shows the reults with the unstable phase. It is déaetteral regions with
enhanced density appear when the system passes a region of instdigltyifférence of the two
figures (2a) and (2b) is shown in figure (3), where the contour linarségs regions with enhanced
density from regions which are depleted of baryon number (due to theepation of the total
baryon number).

A convenient quantitative measure of the resulting degree of “clumping’&iisystem is pro-
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Figure 4: Mean maximum enhancement of the normalized density monfienté= 7,5 (squares, circles)
as obtained for various energies using either the two-pbasation of state (solid) or its one-phase Maxwell
partner (dashed).

vided by the moments of the baryon density dengits),

o) = 3 [ ool dr (4.1)

whereA = [p(r)d®r is the total (net) baryon number. The corresponding normalized moments,
(pN)/(p)N, are dimensionless and increase with the oMigfor a given density distributiop(r);
the normalized moment fod = 1 is unity.

The degree of density clumping generated during a collision dependswitohg time the
bulk of the matter is exposed to the spinodal instabilities. The optimal situatiomsofmrucolli-
sion energies that produce maximum bulk compressions lying well inside gtiehle phase region
because the instabilities may then act for the longest time [8, 16, 18]. At lemengies an ever
smaller part of the system reaches instability and the resulting enhancemestaaller. Con-
versely, at higher energies the maximum compression occurs beyorglribda phase region and
the system is exposed to the instabilities only during a relatively brief periodgithe subsequent
expansion. For still higher energies the spinodal region is being missieelen

Figure 4 shows the (ensemble average) maximum enhancement achievidheason of the
beam energy for the two equations of state. The existence of an optimailoroéisergy is clearly
brought out. While the presently employed equation of state suggests thaptimsal range is
Eap =~ 2—4AGeV, it should be recognized that others may lead to different results.

To gain a more detailed understanding of the clumping phenomenon, we tuavedsthe
distribution of the clump sizes. Although the “clumps” tend to remain fairly diffuegmay define
their extension by means of a specified density cuimffs, and then extract the total net baryon
number contained within the resulting volume. Figure 5 shows the size distritnlitaimed for a
density cutoff ofomin = 7ps, for central lead-lead collisions at/A8GeV.

The initial size distribution is approximately exponential and that feature is prefierved
during the evolution with the one-phase equation of state which produgégibke amplification.
The spinodal instabilities in the two-phase equation of state leads to a prtedesamplification
of length scales near the optimum size, as is brought out by the diffebeteen the two-phase
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Figure5: The size distribution of the density clumps produced in i@réad-lead collisions at BGeV
usingpmin = 7ps to define the clump boundary. The solid histogram shows tteilolition obtained for the
two-phase equation of state and the solid line represengéx@onential fit. The distribution obtained with
the one-phase equation of state is shown by the dotted héstognd the difference between the two size
distributions is also depicted.

size-distribution and the one obtained with the Maxwell partner; this diftergreaks at clumps
containing 5-8 baryons. Nevertheless, for a wide intermediate ramge dbout 3 to about 16, the
resulting two-phase size distribution retains an approximately exponengtiahegnce, but with a
significantly gentler slope.

5. Summary

As reported recently [18], we have augmented an existing finite-densiy fidéd dynam-
ics code with a gradient term and thereby obtained a transport model théiaible for simulating
nuclear collisions in the presence of a first-order phase transitionsdtibes both the temperature-
dependent tension between coexisting phases and the amplification oinbeéadpnodes. Apply-
ing this novel model to lead-lead collisions, using an equation of state withtaofder phase
transition, we found that the associated instabilities may cause significant aatiii of initial
density irregularities, relative to what would be obtained without the phassition.

In particular, we extracted the density enhancement and the clump sizeutistrib

Perhaps most importantly our study supports the general existence pfiamralocollision en-
ergy range within which the phase-transition instabilities have the largest®fin the dynamical
evolution. Our results suggest that this energy corresponds to E8&Vaper nucleon of kinetic
energy for a fixed-target configuration, a range that may be too lowcesaeffectively at RHIC
but which should match well with both FAIR and, especially, NICA.
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