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An unfolding method, based on Bayes theorem is presented to obtain true event-by-event net-

charge multiplicity distribution from a corresponding measured distribution, which is subjected

to detector artifacts. The unfolding is demonstrated to work for widely varying particle production

mechanism, beam energy and collision centrality. Further the necessity of taking into account the

detector effects is emphasized before comparing the experimental measurements to the theoretical

calculations, particularly in case of higher moments. The advantage of this approach being that

one need not construct new observable to cancel out detectoreffects which loose their ability to

be connected to physical quantities calculable in standardtheories.
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1. Introduction

It has been suggested that the higher moments of fluctuationsare very sensitive to the proxim-
ity of critical point as they have strong dependence on correlation length [1] and they are related to
the susceptibility of the system [2, 3]. The higher moments of event-by-event distribution of con-
served quantities like net-charge, net-baryon and net-strangeness have been important observables
to characterize the system formed in heavy ion collision experiments [4]. Further suggestions are
made to explore the QCD phase transition and freeze out conditions in heavy ion collisions, using
the higher moments [5, 6].

Most of the experimental measurements depend on the detector acceptance, particle counting
efficiency and other background effects [10]. Some of them are very difficult to exclude for an
observable which is based on an event-by-event analysis. Therefore the experimentally measured
event-by-event distributions are shown without taking care of these corrections [1, 7, 8, 9]. These
corrections are applied on an average basis to correct the particle yields in heavy ion collision
experiments [10], but to apply these corrections on an event-by-event observable is not trivial.
Hence, comparing uncorrected event-by-event observableswith the theoretical observables should
be done carefully as it may lead to different physics conclusions.

Although, some observables have been constructed in order to cancel out the detector effects
to first order [11, 12, 13, 14], but while making these constructs one may loose the ability to
compare them to the theoretically calculated quantities. Therefore, to compare higher moments of
multiplicity distributions with the theoretical results,one should consider the experimental artifacts.

In the present work, an approach based on bayesian theorem ofprobability is demonstrated to
work successfully to remove the detector artifacts on an event-by-event basis. Such a method has
some constraints in terms of proper detector modeling and a large event-by-event multiplicities.

2. Event generators

Two different event generators are used to explore our proposal. For the present study, HIJING
[15] (version 1.37) and THERMINATOR [16] (version 2.0) event generators provide the facility
to incorporate different particle production mechanism. Using these event generators, net-charge
distributions are obtained within the pseudo-rapidity of -0.5 to 0.5 and transverse momentum range
of 0.2 < pT < 2.0GeV/c with in full azimuthal coverage. The average charge particle counting
efficiency is taken to be 65%, derived from the charged pion efficiency, as is given in Ref. [10].
Further to demonstrate our proposal at different energies,HIJING is also used at

√
sNN = 27, 39,

62.4, 130 and 200 GeV for most central Au+Au events.

3. Bayes method for the unfolding of distributions

The RooUnfoldBayes [17] algorithm of RooUnfold package [18] is used to demonstrate the
present proposal. The algorithm based on Bayes theorem of probability is used to show that the true
distributions can be reconstructed from the distributionswhich are affected by systematic biases
and detection efficiency.

To demonstrate it, 5M Au+Au collision events are generated for each centrality bin using HI-
JING for 19.6 GeV and THERMINATOR for 200 GeV. For each event positive(N+) and negative
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(N−) charge particles are selected and a net-charge distribution (∆N = N+−N−) is constructed on
an event-by-event basis.

Now, to mimic the experimental situation, individualN+ andN− are smeared with a Gaus-
sian function of width 10%, and the mean value correspondingto the average efficiency of 65%
as obtained from the parametrization of thepT dependent efficiency for charged pions from STAR
experiment [10]. Afterwards, these smeared distributionsare used to construct the net-charge dis-
tribution, we will call it themeasured distribution.
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Figure 1: (Color online) Top panel: Event-by-event distribution of positive, negative and net-charge (de-
noted as “True”, solid line) in Au+Au collisions for impact parameterb = 1.7 fm at

√
sNN = 19.6 GeV from

HIJING event generator. Also shown are the corresponding distributions after applying acceptance and ef-
ficiency effects as discussed in the text (denoted as “Measured”, open circles). The unfolded distributions
are shown as red stars and denoted as “Bayes”. Bottom panel: Shows the ratio of the unfolded to the True
distributions.

The measured distribution of net-charge is unfolded with response matrix obtained from the
training procedure using iterative Bayes theorem. The present study uses the optimal value of 4
for the regularization. True, measured and unfolding are performed in a way to eliminate the finite
centrality bin-width effect. The moments of net-charge distributions are derived using cumulant
method [19].

4. Results and Discussions

The true, measured and unfolded distributions for positivecharge (panel a), negative charge
(panel b) and net charge (panel c) are shown in Figure 1. Thesedistributions are for most central
events corresponding to an average impact parameter of 1.7 fm of Au+Au collisions from HIJING
at 19.6 GeV on an event by event basis. Solid lines, open circles and red stars represent the true
distributions, measured distributions and the unfolded distributions respectively, for all the cases.
It is evident that for all the cases, the true distributions are reproduced from the measured distribu-
tions, using the unfolding technique. Also the ratios, presented in the bottom panel suggest that the
unfolding procedure is able to get back the true distribution.
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We have seen the variation of mean, sigma, skewness and kurtosis as a function of centrality
(Npart), obtained from the net-charge distributions in Au+Au collisions at

√
sNN = 19.6 GeV for

true, measured and unfolded distributions [20]. The moments computed from unfolded distribu-
tions and true distributions were found in good agreement. Further, the ratios of unfolded to true
moments were close to unity. It suggests that the unfolding method reproduced the results of true
distribution from the measured distributions. Same conclusions can be drawn from Fig. 2 where
σ2/M, Sσ andκσ2 are drawn as a function ofNpart.
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Figure 2: (Color online) Ratio (panel a) and product of moments (panel(b) and (c)) of net-charge distribu-
tions in Au+Au collisions at

√
sNN = 19.6 GeV from HIJING event generator. The results are for the True,

measured and Bayes unfolded distributions as a function ofNpart.

It is observed (Fig. 3) that the dependence ofκσ2 andSσ is very different for true and smeared
distributions, as a function ofNpart. It implies that any physics conclusion associated with thevari-
ation ofSσ andκσ2 with Npart for net-charge distributions could be highly misleading. However,
the results for measured distributions can be unfolded nicely to get back the results of true distri-
butions.
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Figure 3: (Color online) Product of moments of net-charge distributions in Au+Au collisions at
√

sNN = 200
GeV from THERMINATOR event generator. The results are for the True, measured and Bayes unfolded
distributions as a function ofNpart.

Another event generator, THERMINATOR is also used to check the validity of proposed
bayesian approach. Figure 3 shows theσ2/M, Sσ andκσ2 of net-charge distributions from the
true, measured and unfolded distributions at

√
sNN = 200 GeV, as a function ofNpart. Here also the

ratio and products of moments from unfolded distributions are reproduced as true distributions up
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to a good extent, suggesting that the method proposed in thispaper works equally well for parent
distributions produced from very different particle production mechanisms as well as over a wide
range of beam energies. Besides 19.6 GeV, HIJING is used for

√
sNN = 27, 39, 62.4, 130 and 200

GeV with the same procedure. In this energy dependence studyonly 0-5% central Au+Au events
are used.

In Figure 4,σ2/M, Sσ and κσ2 are drawn as a function of
√

sNN for true, measured, and
unfolded distributions. Here also a good agreement is foundbetween True and Unfolded moments.
This demonstrate that the proposed method works over a wide range of energies as well.
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Figure 4: (Color online) Product of moments of net-charge distribution in 0-5% Au+Au collisions as a
function of

√
sNN from HIJING event generator. The results are for the True, measured and Bayes unfolded

distributions.

5. Summary

The Bayesian unfolding method is successfully demonstrated to unfold back the measured
distributions, which are subjected to detector effects like finite particle counting efficiencies. The
centrality dependent study for moments and their product and ratios is carried with HIJING and
THERMINATOR at 19.6 GeV and 200 GeV respectively. It is observed that the detector effects can
modify the results significantly and these effects can be removed by bayesian unfolding method.
Also, for wide range of energies (

√
sNN=19.6, 27,39, 62.4, 130 and 200 GeV), a good agreement

is found between true and unfolded moments,σ2/M, Sσ andκσ2. However, there are limitations
in terms of proper modeling of the detector response. Also itrequires high multiplicity and large
event statistics for building better response matrix. Although main advantage of Bayesian approach
is that, one don’t have to construct new observables to cancel out the detector effects. Further, more
details of the present work can be found in Ref. [20].
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