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After its energy upgrade the Large Hadron Collider (LHC) will directly look for new physics in
the LHC14 run including searches for supersymmetry (SUSY) and Beyond the Standard Model
(BSM) signals of the composite Higgs mechanism as alternates to the elementary Higgs of the
Standard Model. Recent non-perturbative BSM lattice studies is the main focus of this talk. We
will demonstrate that non-perturbative simulations of strongly coupled gauge theories (SCGT)
have predictive power for experimental searches on the Energy Frontier. Lattice simulations can
significantly contribute to our understanding of important BSM paradigms, like SUSY, conformal
and near-conformal quantum field theories with implications for the dilaton state, or the alterna-
tive composite light scalar as the scalar pseudo-Goldstone boson from global symmetry breaking.
Exploratory lattice studies identify tantalizing candidate theories for the composite Higgs mech-
anism with a light scalar state (Higgs impostor) on the Electroweak scale. The viability of this
paradigm requires a composite resonance spectrum in the 2 TeV range, or higher, far separated
from the Electroweak scale, and perhaps within the reach of the LHC14 run. The written ver-
sion of the talk closely follows the material presented at the conference without reviewing post-
conference developments in the field. Detailed reporting in this plenary talk had to be selective in
the alloted time and space without full and comprehensive review of every interesting aspect of
the parallel BSM sessions.
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The Higgs particle and the lattice

1. Introduction

The recent discovery of the Higgs boson at 126 GeV by the CMS [1] and ATLAS [2] ex-
periments at the LHC provides the first insight into the origin of Electroweak symmetry breaking
(EWSB) in the Standard Model (SM). The minimal realization of EWSB is implemented by in-
troducing an SU(2) doublet Higgs field as an elementary scalar whose vacuum expectation value
(VEV), with VEV= 246 GeV, sets the Electroweak scale. This simple description in terms of an
elementary Higgs field is viewed by most theorists as a parametrization rather than a dynamical
explanation of EWSB. In particular, without new BSM physics on the TeV scale, the mass-squared
parameter of the light and elementary Higgs has to be finely tuned, leading to the well-known
hierarchy problem.

Measured properties of the Higgs particle are not precise enough to know if the discovery will
validate the SM to energy scales far beyond what can be reached in the forseeable future, or new
BSM physics will have to emerge within the reach of the next LHC14 run starting in 2015. After
the energy upgrade, LHC will directly look for new physics including searches for SUSY and BSM
signals of the light Higgs from compositeness as alternate explanations to the elmentary scalar field
in the SM description. Contributions to the new phase of the LHC program is one of the high pri-
ority missions of the lattice community. Simulation results from strongly coupled gauge theories,
like the ones discussed here, also contribute to our theoretical understanding in a broader sense
including conformal and near-conformal gauge theories and important non-perturbative aspects of
supersymmetry. As an example, the spontaneous symmetry breaking of scale invariance with its
pseudo-Goldstone dilaton state close to the conformal window has been the focus of several recent
studies in connection with the Higgs discovery.

Searching for a deeper dynamical explanation and trying to resolve the shortcomings of the
elementary Higgs doublet, new BSM physics of strongly-interacting gauge theories was outside
experimental reach and without powerful non-perturbative lattice tools when it was first introduced
[3–10]. The original framework has been considerably extended by new explorations of the multi-
dimensional theory space in fermion flavor number, the choice of color gauge group, and fermion
representation [11–20]. Systematic and non-perturbative lattice studies play an important role in
studies of this extended theory space [21–62] with a large number of new contributions presented
in BSM sessions at the conference. In the time and space alloted I will discuss some of the contri-
butions and related recent publications.

Of course we hear voices that pursuing the composite Higgs scenario is overtaken by recent
findings at the LHC. After all, a light Higgs-like scalar was found, consistent with SM predictions
within errors, and composite states have not been found below the TeV scale. In contrast, the voices
continue, strongly coupled BSM gauge theories are Higgs-less with resonances predicted below
the TeV scale. Facts do not support this dismissive view which originates from naively scaled
up properties of Quantum Chromodynamics (QCD) and related old technicolor guessing games
lacking predictive power close to the conformal window where gauge theories are nearly scale
invariant, in sharp contrast to QCD which is not. In fact, it has not been shown that compositeness
and a light Higgs scalar are incompatible. I will discuss recent developments with conference
contributions hinting perhaps the opposite. For example, in near-conformal gauge theories a light
composite scalar can emerge on the Electroweak scale with a resonance spectrum far separated
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above the TeV scale, perhaps within the reach of LHC14.
Section 2 is a brief overview of the BSM parallel sessions with apologies for incompleteness.

In Section 3 I will briefly discuss lattice tests of the conformal window and the related infrared
fixed point of the beta function. I will illustrate this with two models which have been investigated
extensively using lattice tools in search for their conformal properties. The main topic of Section
4 is the emergence of light scalars in near-conformal gauge theories. In Section 5 I will briefly
review the idea and lattice implementation of the light Higgs as a scalar pseudo-Goldstone boson.
Section 6 is a short summary of recent lattice developments of SUSY. Section 7 illustrates lattice
applications of BSM phenomenology.

2. Overview of the BSM parallel sessions

The main interest has been to investigate strongly coupled gauge theories (SCGT) close to
the conformal window (CW) with near-conformality, or conformality with exact scale invariance
inside the CW. Approximate scale invariance in the near-conformal scenario makes the models
very different from naively scaled QCD, hence the great interest. The largest number of parallel
contributions reported new results in the SCGT theory space as shown in Figure 1. This naviga-
tion map was introduced in [19]. Fourteen models were discussed for N = 2,3,4 colors in several
fermion representations of the color gauge group, with variations on the number of fermion fla-
vors. Fermions in the fundamental representation of the SU(3) color gauge group were reported at

Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break
electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Figure 1: The conformal window for SU(Nc) gauge theories with Nf fermions in various representations [19]. The
shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index symmetric (red) and
adjoint (green) representations in Schwinger-Dyson approximation. The dashed lines indicate earlier expectations for
larger conformal windows which were based on the fixed points of two-loop beta functions. Circles mark models with
new results reported at the conference in an effort to establish exact classification.

the conference [63–70] for a large range of fermion flavors in and out of the CW. Similar studies
in the fundamental representation with the SU(2) gauge group were also reported with interest-
ing results for six flavors [71, 72] (the model with broken chiral symmetry would exhibit scalar
pseudo-Goldstone bosons). Adjoint representations with SU(2) and SU(3) color gauge group were

3



The Higgs particle and the lattice

addressed in [73–76]. The two-index antisymmetric representation with 6 flavors and the SU(4)
gauge group was reported for the first time [76]. The two-index symmetric representation with 2
flavors and SU(3) gauge group was discussed in three talks [77–79] with the emergence of a light
scalar close to the CW. Some results in a more exotic representation with SO(4) gauge group were
also reported at the conference [80].

Before we get bored with the restricted theory space of Figure 1 which will be my primary
focus in the talk, other interesting contributions at the conference reminded us that the scope of
the theory space can be extended significantly in the BSM paradigm. This includes SUSY with
conference contributions [81–84] and 4+1 dimensional Kaluza-Klein and Gauge-Higgs unifica-
tion [85–88] which some reference as the Hosotani-mechanism. I illustrate some highlights of
4+1 dim results in Figure 2. Other interesting new lattice ideas were also presented including

Definitions Phase diagram Spectrum Conclusions and outlook

Higgs and Z-boson masses
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Figure 2: The emergence of the Higgs on the lattice from 5 dimensions [85], and symmetry patterns of Polyakov loop
spectra from the Hosotani mechanism of Gauge-Higgs unification [88].

Higgs-Yukawa models with spectroscopy and symmetry breaking patterns [89–92], the role of four-
fermion operators [93, 94], conformal radial quantization [95], large N studies [96–100], quantum
gravity [101–103], dark matter on the lattice [104], and the early universe on the lattice [104,105].

3. The conformal window on the lattice

Strongly coupled gauge theories, with massless fermions in some representation of the SU(N)
gauge group, can exhibit infrared fixed points (IRFP) inside the CW with vanishing beta function.
The gauge group, flavor, and representation dependent position of the CW is shown in Figure 1
from the 2-loop perturbative beta function and from Schwingwer-Dyson approximation [19]. Nei-
ther approximation is reliable. Lattice efforts aim to establish the exact location of the CW from
first principles and with important BSM model building consequences. The lattice toolsets will
be illustrated in two frequently discussed models searching for their conformal behavior. The first
model is Minimal Walking Technicolor (MWT) which is defined with two fermion flavors in the
adjoint representation of the SU(2) gauge group [17]. The second model has twelve fermion fla-
vors in the fundemantal representation of the SU(3) gauge group with somewhat controversial and
inconclusive results.

4



The Higgs particle and the lattice

3.1 Two fermion flavors in the adjoint representation of the SU(2) gauge group

Minimal Walking Technicolor (MWT) is defined with two massless fermions in the adjoint
representation of the SU(2) gauge group [17].

Running coupling and β function:
The 2-loop beta function, although not reliable at strong coupling, develops a zero with an IRFP
inside the CW. It is very difficult to resolve the small and nearly vanishing β function of slow
walking from the existence of a conformal fixed point where the beta function develops a zero. The
main problem is to bridge many orders of magnitude in scale which is neccessary to run the gauge
coupling from the UV fixed point toward the far infrared scale controlled by the IRFP. Defined from
the gradient flow of the gauge field [108], a new gauge coupling was proposed recently [106,107].
Since the gradient flow probes the gauge field on the scale

√
8t, the new running coupling can be

defined as a function of L in finite volume V = L4 while holding c = (8t)1/2/L fixed:

αc(L) =
4π

3
〈t2E(t)〉
1+δ (c)

.

This volume dependent coupling includes the tree level normalization factor δ (c) which is known
analytically [106, 107]. The new running coupling scheme provides a very useful alternative to
the original Schrödinger functional scheme [109]. The measured renormalized couplings are very
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Figure 3: The scaled continuum step scaling function !(g2,2)/g2 using the SF and GF methods. On the
left: The black line with the green error band corresponds to the continuum result. The red line with the
hashed band correspond to the lattice result at the largest lattice size L/a = 10. The black dashed line gives
the 2-loop perturbative result. On the right: The black line with the green band correspond the continuum
limit with the coupling scaled with a0(L/a) at each lattice size. The red line with the hashed error band
corresponds to the continuum result without scaling. The black dashed line gives the 2-loop perturbative
result.

4. Conclusions

We have studied the gradient flow coupling in the SU2 gauge field theory with two fermions
in the adjoint representation with Schrödinger functional boundary conditions. We find that the
measurement is in qualitative agreement with the previous studies using the Schrödinger func-
tional method. The results are promising, as the statistical errors are much smaller than in the
Schrödinger functional coupling and scale better with the lattice size. The increased discretization
effects present a problem, which may be alleviated using improved flow equations or definitions
of the measurable 〈E(t)〉. It is also worth studying the effects of the boundary conditions on the
coupling.
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Figure 3: The plot on the left side shows agreement in the continuum limit with the perturbative step function (discrete
β -function) at weak coupling in the Nf = 4 test of the new method [106, 107]. On the right: the MWT application with
Schrödinger boundary condition [74]. The black line with the green band and the red line with the hashed error band
correspond to two different continuum extrapolations of the step function normalized to g2. The black dashed line gives
the 2-loop perturbative result. A clearly identified zero develops in the step function and beta function around g2 ∼ 5
where the plotted ratio crosses one.

accurate and the scheme defines a one-parameter family which can be adjusted to several goals. It
was extensively tested with four massless fermions in the fundamental representation of the SU(3)
color gauge group [107] with results shown in Figure 3. In the Nf = 4 tests antiperiodic boundary
conditions were used for massless fermion in all four directions of the finite four-dimensional
volume and the boundary condition of the gauge field was kept periodic. The gradient flow coupling
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with Schrödinger functional boundary condition was tested recently [110, 111] and effects of the
slowly changing topology on the gradient flow couplign were reported [112]. Application to the
MWT model with Schrödinger functional boundary condition is shown in Figure 3 as reported at
the conference [74]. It was found that the results are in qualitative agreement with the previous
studies using the running coupling of the original Schrödinger functional method [109, 113]. All
findings in the MWT model are consistent with a zero in the step beta function and the existence of
the related IRFP. Results on the gradient flow coupling are promising with small statistical errors
and better scaling with the volume. The discretization effects can be reduced by the Symanzik
improvement program. I expect many more lattice BSM applications from this method.

Anomalous dimension of the ψ̄ψ operator:
An efficient lattice method to extract the fermion condensate from the eigenvalue density is via
the mode number distribution. One calculates the eigenvalues λ of the Hermitian Dirac operator
D†D+m2 and determines how many eigenvalues are below some cut M2, namely

ν(M,m) = V
∫

Λ

−Λ

dλ ρ(λ ,m),

where Λ =
√

M2−m2. The mode number ν(M,m) is renormalization-group invariant [114, 115]
and at leading order one can define an effective fermion condensate Σeff = (π/2V)dν(M,m)/dΛ,
which in the chiral limit yields the condensate Σ if the chiral symmetry of the theory is broken [115].

The mode number distribution was recently used in the context of BSM lattice gauge theories
to extract the anomalous mass dimension in the MWT model [116] and in SU(3) gauge theories
with Nf = 4,8 or 12 fermions in the fundamental representation [117]. New results were reported
at the conference for all four lattice models [68, 73].
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Figure 4: The scale-dependent mode number function of the MWT model is plotted with notation from the original
paper [116]. The red line with the hashed error band corresponds to the continuum result at fixed bare gauge coupling
β = 2.25. The black dashed line gives the 2-loop perturbative result.

In an IR-conformal gauge theory like MWT, the spectral density and the mode number in some
range of the eigenvalues follow power law behavior. The exponent is related to the ψ̄ψ anomalous
dimension γ∗ at the IR-fixed point. The mode number function fitted against the eigenvalue scale
should be a straight line in a logarithmic plot, as shown in Figure 4 for the MWT model [116]. From
the slope of the fit, the anomalous dimension of the MWT model is found to be γ∗= 0.37(2) at fixed
bare gauge coupling β = 2.25. This result was confirmed in the new conference contribution [73].
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Results from the MWT model demonstrate that the mode number method works efficiently in
extracting the ψ̄ψ anomalous dimension from BSM lattice simulations.

Mass-deformed spectroscopy and conformal scaling:
There are two applications of this test working with data extrapolated to infinite volume, or finite
volume data analyzed with conformal finite size scaling theory. Working in the infinite volume
limit and varying the small fermion mass m we can determine the fermion mass dependence of the
physical masses of composite bound states M in the Transfer matrix spectrum probing the well-
known relation M∼ const ·m1/1+γ∗ [44]. The exponent γ∗ controls the scaling behavior of M as a
function of small fermion mass deformations around the IRFP. The method requires infinite volume
extrapolation from large volume data. In the MWT model approximate volume independence is
reached for Mπ ·L > 10 for the lowest mass with pseudo-scalar (pion) quantum numbers. Figure 5
depicts the infinite volume extrapolation of a limited part of the spectrum [73].
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Figure 5: Representative spectrum of mesonic states in the MWT analysis at PCAC fermion mass am = 0.1179(6) with
data shown as a function of the linear lattice size L [73].

A distinct feature of the spectrum is the emergence of a low-lying scalar glueball [73]. The
low-lying scalar spectrum remains incomplete without difficult mixing analysis between the scalar
fermionic bound state and the scalar glueball. The anomalous dimension γ∗ from conformal scal-
ing, M∼ const ·m1/1+γ∗ , is found to be consistent with direct determination from the mode number
function as presented earlier [73]. Sampling the expected topological charge distribution in BSM
lattice simulations is often slow and presents additional problems to circumvent [77]. Rapid sam-
pling of the topology is reported in the MWT model [73] not effecting the observed spectrum.

Conformal finite size scaling analysis using finite volume data was also performed in the MWT
model consistent with other determinations of γ∗ [73]. This method will be described next with
application to the model with twelve fermions in the fundamental representation of the SU(3)
gauge group, another frequently discussed model in the conformal lattice BSM paradigm.

3.2 Twelve fermion flavors in the fundamental representation of the SU(3) gauge group

This model is very close to the conformal edge, without definitive results inside, or outside of
the CW. Its curious and controversial lattice history is difficult and unnecessary to summarize. I
will focus on conference contributions and their implications.
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Brief summary of new conference results:
Itou reported an IRFP in the model from the running coupling of twisted Polyakov loop correla-
tors [119, 120]. In contrast, Onogi did not reach conclusions using the exact same method in a
different data set and different analysis [118]. The Boulder group showed MCRG results which
in their interpretation supports the IRFP [67]. New methods, like the gradient flow coupling with
high precision data and analysis, are needed to have any chance to settle the fate of the IRFP in the
beta function of the model.

The LatKMI group reported consistency with asymptotic conformal scaling M∼ const ·m1/1+γ∗

in their infinite volume extrapolated spectroscopy data [63]. This is not in agreement with some
earlier results also based on extrapolated infinite volume data [23] in significantly lower pseudo-
scalar mass range where conformal scaling should work better. The LatKMI group works at weaker
gauge coupling which should help to better control lattice cutoff effects but forces the pseudo-scalar
mass range in the aMπ = 0.3 range and higher. Earlier work, using data in [23], invoked additional
polynomial terms in the fermion mass m to bring apparent agreement with conformal scaling [27].
I find the results confusing and unsettled. LatKMI results on the scalar mass will be discussed in
Section 4.

As a new development, the Boulder group reported results on the anomalous dimension of
ψ̄ψ and conformal finite size scaling (FSS) analysis, both consistent with conformality in their
interpretation [68, 69]. Their work, as discussed next, will further illustrate the use of lattice tools
in difficult models on the conformal edge.

Conformal finite size scaling:
The expected leading FSS form for any mass M, or for Fπ , scaled with the linear size L of the spatial
volume, is given by a scaling function L ·M = f(x) where x = L ·m1/1+γ is the conformal scaling
variable. The scaling form sets in close to the critical surface for small m values. The scaling
functions f(x) can depend on the quantum numbers of the states but the scaling variable is expected
to have the same form with identical γ exponent in each quantum number channel [42–45]. It
was known before that without subleading conformal scaling correction conformal FSS analysis
was not consistent with IRFP when applied to the model [24, 121]. This is illustrated in Figure 6
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channel separately with question mark on γ of the right panel indicating difficulties of error estimates in bad fits of
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with a general fitting procedure to the scaling functions using B-forms of spline functions without
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any further restrictions or ad hoc assumptions on the form of the scaling functions [24, 121]. The
(in)consistency of the γ exponents in the pion and rho channels is perhaps acceptable but conformal
FSS of the pion deacy constant was seen as complete failure.

It was noted by the same group that in sub-leading order there are conformal FSS scaling
violation effects which are exhibited as a combined cutoff and L-dependent leading correction with
the modified form L ·M = f(x)+L−ωg(x) where the scaling correction exponent ω is determined
at the infrared fixed point (IRFP) g∗ of the β -function as ω = β ′(g∗) [24, 121]. This assumes that
the mass deformation away from the critical surface is the only relevant perturbation around the
IRFP and ω is the highest scaling correction exponent. Close enough to the critical surface it
dominates any other corrections which are supressed then by higher inverse powers of L. To detect
the leading scaling violation effect requires high precision data with fits to independent scaling
functions f(x) and g(x) and the critical exponent ω . In the high quality data set of [24, 121],
designed for conformal FSS, far extending the data set of [23], it was not possible to successfully
detect scaling violation effects consistently and explain failure in the Fπ channel.

In new contribution to the conference, the Boulder group applied the subleading corrections,
ignoring the x-dependence of the scaling function g(x) and reporting good results in support of the
IRFP [69]. The results are illustrated in Figure 7 for the pseudo-scalar mass at a selected value of
the bare gauge coupling approximately matching the gauge coupling of [24, 121]. The wide range
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Figure 7: The best curve collapse fits for the pseudo-scalar mass at βF = 4.0 of the HYP action in [69]. Both panels
show Mπ L as the function of the scaling variable x = m1/ym L. Left: Fits considering only the leading relevant operator.
Right: Fits taking into account the leading scaling violation correction with further notations in the paper [69].

of gauge couplings is an important development in the conformal FSS Boulder analysis as applied
to the model [69]. Without further clarification of the problematic χ2 fit in the Fπ channel the new
analysis perhaps remains incomplete with the original problem persisting in that channel [24,121].
Future work would also require to show consistency of the ω exponent in the beta function and the
subleading scaling correction.

Amomalous dimension of the chiral condensate:
A scale-dependent effective mass anomalous dimension is defined and calculated by the Boulder
group using the mode number function [68]. Figure 8 summarizes the new results for the effective
anomalous dimension as a function of the scale set by the eigenvalues of the Dirac operator [68].
Gauge couplings are in the wide range 3.0≤ β ≤ 6.0 which is a significant development with
results approximately volume independent. The results ar interpreted as follows. All couplings
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Figure 8: The effective mass anomalous dimension is plotted from stochastic mode number measurements [68]. The
largest lattice volume was 484 at β = 6.0 and 324 at the other gauge couplings [68].

β ≤ 5.0 are outside the weak coupling scaling regime. At the largest value of β continuum like
scaling behavior sets in, characteristic of sufficiently small lattice spacing. In the infrared limit
all data are consistent with the attraction of the conformal IRFP [68]. Independent checks of the
interpretation by other groups is a very important next step for continued progress.

4. Light Higgs near conformality (dilaton-like?)

The anticipation of light composite scalars near the conformal window can be explained in
the following setting. We know that QCD with two massless fermion flavors in the fundamental
representation of the SU(3) color gauge group is very far from the CW and does not exhibit ap-
proximate scale invariance in the far infrared. The sigma particle of the model is elusive and heavy
on the scale of the pion decay constant Fπ . There is a dramatic change in the position of the model
on the navigation map of Figure 1 if the massless fermion doublet is coupled to the SU(3) gauge
group in the two-index symmetric representation with six independent color components of the
fermions (hence the frequently used name: sextet model) [17,77,136–139]. Suddenly the model is
sitting very close to the conformal edge, scale invariant, or nearly scale invariant in the far infrared.
Results supporting near-conformal behavior are presented in Section 4.2. Approximate scale in-
variance in the near-conformal scenario is far different from naively scaled QCD with exciting new
questions about dilaton-like interpretation for a light scalar, if emerging from the theory. Hence the
great theoretical interest.

4.1 The dilaton and PCDC

The light dilaton is the pseudo-Goldstone particle of spontaneous breaking of scale invariance
and has been featured in recent phenomenological discussions for the interpretation of the Higgs
discovery [122–125] with a long history in the SCGT paradigm [9, 17, 122, 126–135]. In strongly
interacting gauge theories, like the sextet model under active investigation [138, 139], a dilatation
current Dµ = Θµνxν can be defined from the symmetric energy-momentum tensor Θµν . Although
the massless theory is scale invariant on the classical level, from the scale anomaly the dilatation
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current has a non-vanishing divergence, ∂µDµ = Θ
µ

µ . The PCDC relation,

m2
σ '−

4
f 2
σ

〈0|
[
Θ

µ

µ(0)
]

NP
|0〉 ,

connects the dilaton mass mσ and its decay amplitude fσ with the non-perturbative gluon con-
densate in the energy-momentum tensor. For discussion of the PCDC relation constraining the
properties of the dilaton, standard arguments, like in [122, 130, 133] can be followed.

Predictions for mσ when close to the conformal window depend on the behavior of fσ and the
non-perturbative gluon condensate Ga

µνGaµν |NP of the energy-momentum tensor Θµν . There are
two different expectations about the limit of the gluon condensate to fσ ratio when the conformal
window is approached. In one interpretation, the right-hand side of the PCDC relation is predicted
to approach zero in the limit, so that the dilaton mass m2

σ ' (Ncf−Nf) ·Λ2 would parametrically
vanish when the conformal limit is reached. The Λ scale is defined where the running coupling
becomes strong to trigger chiral symmetry breaking (χSB). The formal parameter Ncf−Nf with
the non-physical (fractional) critical number of fermions vanishes when the conformal phase is
reached [130]. In an alternate and more widely accepted scenario the right-hand side ratio of the
PCDC remains finite in the conformal limit and a residual dilaton mass is expected when scaled
with fσ ' Λ [122, 133].

Dilaton, or “just Higgs impostor?" :
Composite BSM models close to the CW will exhibit χSB with a Goldstone pion spectrum. When
coupled to the electroweak sector, electroweak symmetry breaking with the Higgs mechanism is
realized. The very small beta function (walking) and χSB are not sufficient to guarantee a light
dilaton state if scale symmetry breaking and χSB are entangled in a complicated way. It is far from
clear that the dilaton mechanism is naturally realized in strong dynamics. However, a light Higgs-
like scalar is still expected to emerge near the conformal window as a composite state with 0++

quantum numbers, not necessarily with dilaton interpretation. This scalar state has to be light but
not required to exhibit exactly the observed 126 GeV mass. The light scalar from composite strong
dynamics is expected to get lighter from electroweak loop corrections, most likely dominated by
the large negative mass shift from the top quark loop [136]. In Section 4.2 and Section 4.3 I will
discuss three models with light scalars, reported at the conference, as we are searching for candidate
Higgs impostors in viable model building.

4.2 The light scalar of the sextet model

The sextet representation of the fermion doublet is the important ingredient which brings the
model close to the conformal window as suggested by the small beta function of a recent pa-
per [139]. The statistical accuracy of the very small beta function could not resolve the existence
of the IRFP from slow walking. However, when combined with the observation of chiral symmetry
breaking [138], confirmed at the conference from the chiral limit of small fermion mass deforma-
tions [79], the overall consistency requires the model to be close to the conformal window with a
very small non-vanishing β -function (see, also [49, 50, 78]).

Candidate Higgs impostor:
The model exhibits the simplest composite Higgs mechanism with three Goldstone pions of χSB
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transforming into the Electroweak bosons. The light scalar emerged very recently as reported at the
conference [77]. This candidate Higgs impostor is identified as the 0++ isospin singlet state in the
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Figure 9: Preliminary results on the emerging light scalar in the sextet model from 323×64 lattices at gauge coupling
β = 3.20. Higher statistics and more comprehensive analysis are required for a more robust extrapolation to the chiral
limit [77].

spectrum as shown in Figure 9. The scale F = (VEV), with VEV= 246 GeV from the Electroweak
theory, is set in lattice spacing units by the decay constant of the pseudo-scalar pion in the chiral
limit. The large split from the isotriplet 0++ state indicates the important role of disconnected
vacuum diagrams, as explained in Section 4.3.

Chiral condensate:
New results were presented at the conference to confirm chiral symmetry breaking in the massless
fermion limit of the model [79]. An important consistency check on the fermion mass dependence
of the chiral condensate ψ̄ψ and the pion spectrum is the GMOR relation 〈ψ̄ψ〉 = M2

πF2
π /m for

two fermion flavors. The Goldstone mass spectrum analysis is shown on the left panel of Figure 10.
The variation with mass is less than for the directly-measured condensate, but is still sizable. A
quadratic extrapolation to the chiral limit describes the data well, which is consistent with earlier
independent fits of M2

π and Fπ in Ref. [138]. However the extrapolated value from the GMOR
relation differs from the extrapolations of the directly-measured original and subtracted condensate
at gauge coupling β = 3.2 [138]. This discrepancy requires further investigation including cutoff
effects from extended data sets of several gauge couplings.

The chiral condensate was independently determined from the eigenvalue density of the Dirac
operator for small eigenvalues of gauge configurations as reported at the conference [79]. The
eigenvalue density for the largest lattice volume 483×96 at the lightest fermion mass m = 0.003 is
shown on the right panel panel of Figure 10. The eigenvalue density increases slowly with λ and
at this fermion mass the ρ(λ = 0) density is quite close to the chiral extrapolation of the directly-
measured condensate 〈ψ̄ψ〉. Topology and the zero modes of the Dirac spectrum from the index
theorem should be an important goal of future investigations of the model.

The resonance spectrum:
It is important to investigate the chiral limit of composite hadron states separated by a gap from the
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Goldstones and the light scalar. Resonance masses of parity partners also provide important infor-
mation with split parity masses in the chiral limit. This is particularly helpful not only to confirm
χSB but to obtain a first estimate on the S parameter for probing the model against Electroweak
precision tests [154]. A remarkable spectrum is emerging within the reach of the LHC14 run as
sketched in Figure 11.
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observed Higgs-like?

EW self-energy shift

within LHC14 reach

4
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W Z

FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
iπaTa/v

�
, with covariant derivative DµU ≡

∂µU − igWa
µTaU + ig�UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. ∆S is the contribution to the S parameter from the physics at the cutoff scale, and is

assumed to vanish in the Mρ → ∞ limit. The interactions contributing to the Higgs self-energy

are

LH ⊃
2 m2

W rπ
v

H W+
µ W−µ +

m2
Z rπ
v

H Zµ Zµ − mt rt

v
H t̄ t

+
m2

W sπ
v2 H2 W+

µ W−µ +
m2

Z sπ
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

rπ = sπ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cutoff come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4πκFΠ)2

16π2v2


−4r2

t m2
t + 2sπ


m2

W +
m2

Z

2




 + ∆M2

H
(4πκFΠ) , (4)

where ∆M2
H

(4πκFΠ) is the scale-dependent counterterm and κ is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4πκFΠ,
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where FΠ is the TC pion decay constant and κ scales like 1/
�

d(RTC) if the cutoff is identified

with the technirho mass, or is a constant if the cutoff is of the order of 4πFΠ. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if FΠ = v,

which is appropriate for a TC theory with one weak technidoublet, then δM2
H ∼ −12κ2r2

t m2
t ∼

−κ2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH � 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the σmeson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to different gauge groups see [24, 25]. We then discuss possible

effects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without effects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
Π ∼ d(RTC) m2

TC , v2 = NTD F2
Π , (5)

where FΠ is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N∗TF/2, where N∗TF is the actual number of techniflavors arranged in weak

doublets and therefore N∗TF ≤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
π

m2
σ . (6)
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Figure 11: Resonance spectrum based on a single gauge coupling β = 3.2. The control of physical scale setting will
require extended data sets of several gauge couplings. Mass shift from Electroweak self-energy diagrams is shown
schematically [136].

4.3 Methodology and scalars in the fundamental fermion representation

The staggered lattice fermion formulation was used in two independent pilot studies by the
LatKMI group and the Lattice Higgs Collaboration (LatHC) to calculate light scalar states in models
with fermions in the fundamental and sextet representations of the SU(3) color gauge group.

Nf=12 and Nf=8:
The LatKMI group deserves credit to publish first [140] the Nf=12 scalar with further results re-
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ported at the conference [63, 64]. A distinct additional feature of the LatKMI results is the emer-
gence of a low-lying scalar glueball [64]. Independently, results of the LatHC group were posted in
the USQCD BSM white paper submitted to the DOE around the same time [141]. The pilot study
of the LatHC group mostly focused on testing the platform of the methodolgy with primary interest
in the sextet model [77]. The two groups use similar but not identical technologies with results
which match reasonably well, as shown in Figure 12 for the Nf=12 model.

t
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Figure 12: Tests of the light scalar in the model with Nf = 12 flavors in the SU(3) representation from the LatKMI
group and the LatHC group. The tree-level Symanzik-improved gauge action with staggered fermions is used and the
HMC algorithm is employed [140, 141]. On the left panel, at gauge cooupling β = 2.20 and fermion mass am = 0.025,
results from 200 gauge configurations is shown from the LatHC group [141]. A typical non-singlet correlator (red points)
has a non-oscillating contribution from the iso-vector a0 scalar (fitted as blue curve) and an oscillating contribution from
the parity partner πsc (fitted as magenta curve). The red curve is the combination of the two fits. The panel in the
middle shows a typical singlet correlator with non-oscillating contribution from the iso-singlet f0 scalar state (fitted as
blue curve). The oscillating contribution ηSC is not detectable within statistical fluctuation. On the right panel, matching
results are shown from the latKMI collaboration [140] with comparable accuracy to the results of the LatHC group. The
magenta curve indicates the mπ position, for comparison.

A staggered operator which creates a state that lies in the spin-taste representation ΓS⊗ΓT

also couples to one lying in the γ4γ5ΓS⊗ γ4γ5ΓT representation. Thus a staggered meson correlator
has the general form

C(t) = ∑
n

[
Ane−mn(ΓS⊗ΓT)t +(−1)tBne−mn(γ4γ5ΓS⊗γ4γ5ΓT)t

]

with oscillating contributions from parity partner states. For the scalar meson (ΓS⊗ΓT = 1⊗ 1),
the parity partner is γ4γ5⊗ γ4γ5 which corresponds to one of the pseudo-scalars in the analysis. For
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Figure 13: The flavor-singlet scalar mass mσ is shown for Nf=8 as a function of mf in several lattice volumes [65].
For comparison, the masses mπ and mρ are also shown from [142].

flavor singlet mesons, the correlator is of the form C(t) = Cconn(t)+Cdisc(t) where Cconn(t) is the
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correlator coupled to the non-singlet meson state and Cdisc(t) is the contribution of disconnected
fermion loops in the annihilation diagram. These correlators were used in the Nf=12 analysis as
shown in Figure 12. They were also used in the sextet analysis with results preseneted in Section
4.2 and in the Nf=8 analysis as well. LatKMI reported at the conference the first results of a light
scalar in the Nf=8 model [65] as shown in Figure 13.

5. Composite Higgs as a scalar pseudo-Nambu-Goldstone boson

Non-perturbative results are emerging from this important BSM lattice initiative which I will
briefly sketch here. The Lattice Strong Dynamics (LSD) collaboration is actively pursuing the
paradigm and the recent USQCD BSM white paper provides more technical details [141].

It is natural to explore strong gauge dynamics where the light composite Higgs is identified
with a scalar pseudo-Nambu-Goldstone boson (PNGB) which has zero mass before the Elec-
troweak interactions are turned on. The PNGB Higgs mechanism [143] plays an important role
in little Higgs theories [144, 145] and minimal conformal technicolor [146]. In little Higgs theo-
ries, an interplay of global symmetries is devised in an effective Lagrangian to cancel the quadratic
divergences for the Higgs mass to one loop. This provides a weakly coupled effective theory with
little fine tuning up to energies scales in the 5-10 TeV range.

UV complete strongly coupled lattice gauge theories use fermions in real or pseudo-real rep-
resentations of the gauge group in this paradigm, necessary for scalar Goldstone particles [147]. In
the chiral limit the Higgs scalar is a scalar Goldstone Boson in the massless spectrum that includes
a triplet of pseudo-scalars, required to give masses to the W and Z. The naturally light Higgs mass
is induced by small couplings to the Electroweak sector. The main goal of the lattice approach is to
demonstrate that viable UV complete theories exist and can replace the weakly coupled elementary
Higgs.

Minimal PNGB Model:
The minimal PNBG Higgs model consists of a SU(2) color gauge theory with Nf = 2 fundamental
massless fermions. Additional sterile flavors with Nf > 2 can be added [146] to drive the theory
close to or into the conformal window. Because of the pseudo-real properties of SU(2) color
group, the conventional SU(Nf)L×SU(Nf)R vector-axial symmetry becomes a larger SU(2Nf)
flavor symmetry combining the 2Nf left/right 2-component chiral spinors. Most-attractive-channel
arguments suggest that SU(2Nf) will break dynamically to Sp(2Nf). If explicit masses are given
to Nf−2 flavors, the remaining 2 massless flavors yield the SU(4)/Sp(4) coset with 5 Goldstone
Bosons: the isotriplet pseudo-scalars to give mass to the W, Z, and two isosinglet scalars. As a first
step, lattice calculations for Nf = 2 have been performed [147] using Wilson fermions that give
non-perturbative support to the breaking pattern, SU(4)→ Sp(4), favored by the most attractive
channel argument in the chiral limit.

To include the effect of the top quark into the lattice simulations, one must add the four Fermi
term induced by the top quark loop. The four Fermi term is then recast as a quadratic term coupled
to a Gaussian auxiliary field. It is an open question whether or not the four-fermion operator
requires an explicit cut-off or whether it becomes a relevant operator due to a large anomalous
dimension. Important problems have to be sorted out in the fermion determiant including its sign
and the Pfaffian form. When both the diquark and bilinear for the four Fermi term are included
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together, the measure is a Pfaffian, or the square root of the fermionic determinant. An example
has been considered recently for staggered fermions [93, 148]. This will require continued further
study, like the ongoing effort of the LSD collaboration [141].

6. SUSY on the Lattice

One natural solution to the problems with the Standard Model Higgs is to incorporate su-
persymmetry. The Higgs becomes naturally light since it is paired with a fermonic superpartner
whose mass is protected by chiral symmetries. There were important SUSY contributions at the
conference [81–84] which I cannot discuss individually in the alloted time and space. In the gen-
eral context, I will sketch some recent lattice SUSY developements with reference for more details
in [141].

N=1 super Yang-Mills:
Credible studies of SUSY theories on the lattice emerged from successfully using domain wall
fermions [149] in N = 1 super Yang-Mills investigations. Using these ideas one can also plan now
lattice studies of super QCD theories. The work in super QCD is important for gaining a detailed
understanding of the dynamical breaking of supersymmetry. This has important phenonenological
implications since non-perturbative supersymmetry breaking in some high scale hidden sector feeds
down to determine the structure of soft breaking terms in any low scale supersymmetric theory,
like MSSM. The values of soft parameters are determined by non-perturbative quantities in the
high scale theory. An ab initio lattice calculation of such quantities in the high scale theory can
thus provide constraints on models of BSM physics. While super QCD is known to have no exact
SUSY breaking vacua it does possess many metastable vacua whose lifetimes can be sufficiently
large that they can play this role [150]. Thus a detailed understanding of the vacuum structure and
strong coupling dynamics of super QCD can strongly constrain possible supersymmetric models.
Preliminary work has already demonstrated non-zero gluino condensate in the SU(2) theory in
agreement with theoretical expectations [149, 151]. A plot of the gaugino condensate vs. residual
mass is shown in Figure 14. Building a realistic theory will require to add Nf quarks and their scalar
superpartners (squarks), and additionally extend the gauge group to a larger number of colors Nc.
To restore SUSY in the continuum limit now will require DWF and tuning of parameters in the
squark sector [152].

N=4 super Yang-Mills:
As we discussed earlier, there has been renewed interest in the possibility that the Higgs is a pseudo-
dilaton state associated with spontaneous breaking of scale invariance. This is particularly simple
to realize in a supersymmetric theory with flat directions, with the prime example of N = 4 super
Yang-Mills. The dilaton corresponds to translations along such a flat direction. A related recent de-
velopment has been the construction of lattice theories with some exact supersymmetry at non zero
lattice spacing, like N = 4 super Yang-Mills. The exact supersymmetry present in the N = 4 lat-
tice theory avoids fine tuning problems and deploys lattice simulations to study the non-perturbative
structure of this theory [153]. The N = 4 lattice action has flat directions which are stable against
quantum corrections due to the exact lattice supersymmetry. To realize the spontaneously broken
state and the corresponding dilaton in the lattice theory then requires that a non-zero vacuum expec-
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Figure 14: Gaugino condensate vs residual mass for SU(2) N = 1 super Yang-Mills regulated using a domain wall
fermion action. The gauge coupling β = 2.4 while the bare fermion mass is set to zero. The data points correspond to
different lattice volumes and Ls [149, 151].

tation value of one or more scalar fields kept fixed and the lattice Monte Carlo procedure modifed
so that no integration over this mode is carried out.

The conference contributions [81–84] and the two examples I briefly described clearly show
that lattice SUSY is actively contributing to the BSM paradigm.

7. Phenomenological applications of the BSM lattice toolset

Phenomenological applications are beginning to emerge from lattice investigations. The LSD
collaboration plays a very important leading role in these investigations with impressive results
reviewed in the USQCD BSM white paper [141].

7.1 S-parameter

The S parameter was introduced to analyze oblique Electroweak corrections in precision tests
[154]. The experimental value of S depends on the Higgs mass MH; with MH = 126 GeV the
constraint is S = 0.03±0.10, consistent with the standard model [155]. QCD-like new strong
dynamics would predict S & 0.3; this was originally obtained by scaling up experimental QCD
data for vector (V) and axial-vector (A) spectral functions to the electroweak scale [154], and has
been confirmed by lattice QCD calculations [156–158].

To see how non-QCD-like dynamics may change the situation, consider

S = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM , 4πΠ

′
V−A(0) =

1
3π

∫
∞

0

ds
s
[RV(s)−RA(s)] ,

where ΠV−A(Q2) is related to a dispersive integral of spectral functions. The near restoration of
chiral symmetry with approximate parity doubling will lead to strong cancellations between RV(s)
and RA(s) and therefore reduce S as expected near the conformal window.

On the lattice, ΠV−A(Q2) is measured from V and A two-point current correlation functions.
Existing calculations use overlap or domain wall fermions, for which good chiral and flavor sym-
metries lead to large cancellations of lattice artifacts in the V–A difference, and to equal renormal-
ization factors ZV = ZA [156,157,159]. These formulations also allow direct connection to contin-
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Figure 15: The S parameter for SU(3) gauge theories with Nf = 2 and 6 fundamental fermions, from Ref. [159]. MP is
the pseudo-scalar mass, while MV0 is the vector meson mass in the chiral limit. The Nf = 6 theory has 35 pseudo-NGBs,
and here it is assumed that 32 of them have mass ≈ 0.6MV0.

uum chiral perturbation theory, where the S parameter corresponds to the low-energy constant L10.
So far few lattice studies of S have been completed: Refs. [156–158] investigated QCD-like tech-
nicolor, and relative to those results Ref. [158] observed a significant reduction in S with Nf = 6
light fermions (Figure 15). Ref. [160] reported some qualitative investigations of ΠV−A(Q2) for
fermions in the sextet representation of SU(3).

7.2 WW Scattering on the Lattice

The scattering of W and Z gauge bosons is sensitive to deviations from the Standard Model in
the electroweak symmetry-breaking sector. In W/Z scattering at low energies one “integrates out"
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FIG. 3: Plot of MP /|↵k| cot � ' MP aPP vs. (MP /FP )2. The
error bars are statistical plus systematic. The red circles represent
the two-flavor data and the blue squares represent the six-flavor
data. The dashed line is the LO ⇥PT result (zero parameter fit).
Larger negative results correspond to more repulsive scattering.

The dashed line, representing the LO expression
�M2

P /16⇤2F 2
P , is a reasonably good first approximation

to the data for both Nf = 2 and Nf = 6. For Nf = 2, the
data show that the effect of the NLO term is to make the
interaction more repulsive. The quantity in square brackets
in Eq. (23) is positive and of order unity within the range
shown. A fit to just MP aPP with µ = F leads to the
value b⇥rPP (µ = F ) = �4.67 ± 0.65+1.06

�0.05. Clearly there
is some cancelation between this term and the chiral loga-
rithm. Nonetheless, this b⇥rPP value (when combined with
the br

M and br
F values in Table I) is consistent with the br

PP

value in Eq. (21).
For Nf = 6, the data is even closer to the LO dashed

line, suggesting that NLO perturbation theory in the form
of Eq. 23 might again be reliable. If this expression is
used to fit the Nf = 6 data, then the quantity in square
brackets is again positive and of order unity within the
range shown, but somewhat smaller in magnitude than for
Nf = 2. Since we don’t yet know the precise value of F
in lattice units for Nf = 6, we carry out the NLO fit using
the scale µ = 0.023a�1 (F for Nf = 2). The fit leads to
b⇥rPP (µ = 0.023a�1 ⇤ F ) = �7.81 ± 0.46+1.23

�0.56, larger
in magnitude than for Nf = 2. There is now more cance-
lation between this term and the chiral logarithm than for
Nf = 2.

The above values of b⇥rPP emerge from a fit of Eq. (23)
to each of the three lightest data points (corresponding to
mf = 0.01� 0.02), with a fixed choice µ = 0.023a�1 ⇤
F . A plot of the resultant value of b⇥rPP versus m (Fig. 4),
shows that b⇥rPP (µ = 0.023a�1 ⇤ F ) is relatively inde-
pendent of m for both Nf = 2 and Nf = 6 as expected
if NLO perturbation theory is reliable. The evident shift
going from Nf = 2 to Nf = 6 is interesting since this
quantity is contains LEC’s that enter into WW scattering
through Eq. (24).

0 0.005 0.01 0.015 0.02 0.025 0.03
m

-10

-8

-6

-4

-2

0

b!
r PP

(µ
 =

 0
.0

22
9 

a-1
)

Nf=2
Nf=6

FIG. 4: Chiral parameter b⇥rPP versus fermion mass m for Nf =
2 and Nf = 6.

It is not yet clear whether this fit can be trusted for
Nf = 6, but even if it can, the resultant value for
br⇥

PP (µ = 0.023a�1 ⇤ F ) determines only the combi-
nation of LECs in Eq. (24), which includes Lr

i (µ) values
not directly relevant to WW scattering. Further calcula-
tions will be necessary to isolate ��4(MH , MP = Mds)
and ��5(MH , MP = Mds) (Eq. (7)). This will then de-
scribe the effect of beyond-standard-model physics for a
range of PNGB masses MP .

SUMMARY AND DISCUSSION

Using lattice simulations, we have computed
pseudoscalar-pseudoscalar scattering in the maximal
isospin channel for an SU(3) gauge theory with two and
six fermion flavors in the fundamental representation.
Our calculation of the S-wave scattering length was then
related to the next-to-leading order (NLO) corrections
to WW scattering through the low-energy coefficients
of the chiral Lagrangian. For Nf = 2, our result for
the scattering length agreed with previous calculations,
showing an increase in repulsion due to the NLO correc-
tions. For WW scattering, we obtained an estimate for
��4(MH)+ ��5(MH) (Eq. (22)) describing deviations from
the standard model.

Six-flavor scattering showed a somewhat less repulsive
NLO interaction than its two-flavor counterpart for a fixed
ratio of the pseudoscalar mass to its decay constant. The
range of fermion masses employed so far does not allow a
clearly reliable use of chiral perturbation theory. Also, the
appearance of more terms in the hadronic chiral lagrangian
for six flavors does not allow the extraction of only the
combination of parameters entering WW scattering. Fur-
ther simulations of additional low-energy scattering param-
eters at lower fermion-mass values will be required to com-
plete this study.

Figure 16: From [161], comparison of chiral parameter b
′r
PP obtained from maximal-isospin π−π scattering in SU(3)

gauge theories with Nf = 2 (red) and Nf = 6 (blue) light fermion species. The parameter b
′r
PP is sensitive to a combination

of low-energy constants which would be relevant for WW scattering, hinting that the scattering rate may be enhanced in
theories of electroweak symmetry breaking constructed with larger Nf.

the heavier states to work in an effective field theory resembling the Standard Model [162–164].
The first deviations would appear in two-, three-, and four-point functions of the electroweak gauge
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bosons, corresponding to oblique corrections [154,158], anomalous triple-boson vertices, and W/Z
boson scattering.

A recent lattice study has focused on the low-energy constants relevant for WW scattering in
SU(3) gauge theories with Nf = 2 and 6 light fermion species [161]. In the strongly-coupled gauge
theory, the relevant physical process to determine these low-energy constants is π-π scattering
(these “pions" will become the longitudinal modes of the W bosons in a composite Higgs the-
ory.) In the initial work, only the extraction of a combination of the relevant low-energy constants
was possible; calculation of scattering lengths in other channels and the use of partially-quenched
fermion masses may be necessary to separate the individual constants. An interesting trend was
observed in the initial study, with the measured combination of low-energy constants showing a
significant enhancement from Nf = 2 to Nf = 6 (see Figure 16). If this trend continues, theories
with greater fermion content may give rise to greatly enhanced WW scattering rates, which could
be observed at the LHC.

7.3 Composite Dark Matter

Composite dark matter models can have unique phenomenological signatures. In these mod-
els, an electroweak-neutral composite dark matter candidate can be formed as a bound state of
electroweak-charged fundamental particles, bound together by a new strong gauge force. The
charged constituents give rise to the necessary interactions in the early universe, but the interac-
tions of the neutral state with ordinary matter in the present Universe will be greatly suppressed.
In scenarios of dynamical electroweak symmetry breaking, in which the Higgs boson itself is a
composite state, the presence of additional bound states which can play the role of dark matter is
natural and the couplings to the electroweak sector are particularly well-motivated [165,167,168].
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Figure 17: From [104], calculated Xenon100 event rates based on simulation results for the charge radius (dashed) and
magnetic moment (solid) of baryonic dark matter in three-color gauge theories with Nf = 2 and Nf = 6 light fermion
species. Bounds arising from the magnetic moment interaction are quite strong, of order 10 TeV based on the latest
Xenon100 data [169].

In the context of composite dark matter, there are many observables of interest, but one set of
observables which are directly relevant to experiment are the electromagnetic form factors, which
determine the electroweak interaction strength of dark matter with ordinary matter. Recently, a
lattice calculation of the magnetic moment and charge radius has been carried out in gauge theories
with Nf = 2 and Nf = 6 light fermion species in the SU(3) representation of the gauge group.
Nf=2 corresponds to QCD, while the presence of extra fermions in the Nf = 6 theory change the
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dynamical properties in comparison with QCD [28]. Results for the charge radius and magnetic
moment, converted to direct-detection constraints for the recent Xenon100 experimental release,
allow the exclusion of composite dark matter based on these models for masses up to 10 TeV as
shown in Figure 17 [104].
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