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QCD at non-zero temperature ... Kalman Szabo

Figure 1: The chiral susceptibility does not depend on the volume. It means, that the QCD transition is a
crossover [1].

1. Crossover, transition temperature and equation of state

Three results in lattice QCD thermodynamics matured to a well-established status in recent
years: the nature of the transition, the transition temperature and the equation of state. This means,
that all systematic uncertainties have either been eliminated or are kept under control. The compu-
tations use physical values for the quark masses, a continuum extrapolation is carried out from upto
five different lattice spacings and different physical volumes are used to control the finite size error.
The only point of concern, that all these results are obtained with staggered fermions. Though
there is currently no sign, that in these observables the use of staggered fermions would cause any
problems, it is highly desirable to have cross-checks using other fermion formulations.

1.1 Crossover

The transition from the low temperature hadron dominated phase to the high temperature
quark-gluon plasma is a crossover [1]: there is no singularity in the transition region. The chi-
ral susceptibility peak is shown on Figure 1 in the transition region for three different volumes.
The height and the width of the peak remains constant, as one increases the volume, no diverging
behaviour is seen, which is the characteristic of a crossover transition.

1.2 Transition temperature

In a crossover there is no single critical temperature, which would separate the two phases
of matter. Transition temperatures, Tc’s can still be defined as characteristic points (peak position
or inflection point) of observables. Different observables can in general give different transition
temperature values, this is a feature of the crossover transition. A particularly interesting Tc is
the one defined as the peak position of the chiral susceptibility. Its value was highly disputed, a
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Figure 2: The QCD transition temperature in early determinations. There is a strong decrease with the
lattice spacing. The now accepted continuum value is Tc ∼ 150 MeV. Figure from [5].

consensus about its value has only been reached recently:

Tc = 147(2)(3) MeV Wuppertal-Budapest (WB) group [2, 3, 4],

Tc = 154(9) MeV hotQCD collaboration [5].

Back in 2006 the Bielefeld-Brookhaven-Columbia-Riken collaboration, which later merged
with part of the MILC collaboration and formed the hotQCD, was reporting considerably larger
values for this transition temperature [6]. The reason is now widely accepted: the lattice artefacts
on the lattices, that were used in [6], were very large. This is demonstrated on Figure 2. The 2006
continuum extrapolation is the red line, which was carried out using the two coarsest lattices and
resulted in Tc ∼ 190 MeV. Adding a finer lattice changed the continuum extrapolation, this is the
blue line, which decreased the value of the transition temperature significantly.

Other fermion formulations are also used to determine Tc. Though even the most advanced
ones are not in the continuum, see the domain wall fermion result of [7] or using larger than
physical quark masses, see the Wilson fermion result of [8].

1.3 Equation of state

In 2013 the 2+1 flavor equation of state has also become member of the “the continuum ex-
trapolated results with physical quark masses” club [9]. The trace anomaly and the pressure are
shown on the upper and lower panel of Figure 3. Both are consistent with the Hadron Resonance
Gas model for small temperatures. The following parameterization describes the trace anomaly as
the function of the temperature

I(T )
T 4 = exp(−h1/t−h2/t2) ·

(
h0 +

f0[tanh( f1 · t + f2)+1]
1+g1 · t +g2 · t2

)
,

where t = T/200 MeV and the coefficients are:
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Figure 3: The 2+1 flavor continuum extrapolated trace anomaly (up) and pressure (down).

h0 h1 h2 f0 f1 f2 g1 g2

2+1 0.1396 -0.1800 0.0350 1.05 6.39 -4.72 -0.92 0.57

A full result in the 2+1 flavor case, although it neglects the charm quark contribution was neces-
sitated by a discrepancy: there was a ∼20% difference in the peak height of the trace anomaly
between the hotQCD data and the WB data from 2010 [10]. The WB group has confirmed their
previous equation of state calculation by improving it in many ways, as was described by Krieg
in his talk [9]. These include a continuum extrapolation from five different lattice spacings, an
improved determination of the zero point of the pressure, an improved systematic error determina-
tion and a cross-check with a somewhat different staggered action. The updated WB results are in
complete agreement with those from 2010. There was no update from the hotQCD group, so the
discrepancy still remains to be resolved.

A 2+1 flavor result cannot be considered as the final one, due to the omission of the charm
quark, which becomes important for high enough temperatures. An estimate of the 2+1+1 flavor
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trace anomaly, which is based on partial quenching the charm quark, is given by the same formula
as before with the following parameters [10]:

h0 h1 h2 f0 f1 f2 g1 g2

2+1+1 0.1396 -0.1800 0.0350 5.59 7.34 -5.60 1.42 0.50

Several groups are now carrying out simulations with a dynamical charm quark. One of them is
the MILC collaboration, who use highly improved staggered quarks down to a pion mass of mπ ∼
300 MeV, the results were presented by Bazavov [11]. The tmfT collaboration utilizes twisted
mass quarks, down to a pion mass of mπ ∼ 400 MeV, as was described by Burger [12]. Note,
that although these simulations are done at more than one lattice spacings, the results are not yet
continuum extrapolated.

An achievement of recent years, which is important from theoretical point of view, is that
lattice simulations can be run at such high temperatures, where a connection to perturbation theory
is possible. In pure Yang-Mills theory this is now done [13].

2. Fluctuations

Baryon number (B), electric charge (Q) and strangeness (S) fluctuations have become major
topics in QCD thermodynamics. They are defined by differentiating the partition function with
respect to the baryon, charge and strange chemical potentials:

χ
BQS
i jk =

1
V T 3

[
∂ i

∂ (µB/T )i
∂ j

∂ (µQ/T ) j
∂ k

∂ (µS/T )k

]
logZ.

In the lattice community these quantities are better known as quark number susceptibilities, they
have been being calculated on the lattice since more than a decade now. The calculation poses sig-
nificant numerical challenges: not only the number of terms increases with the number of deriva-
tives, but so does the cancellation between these terms. The rule of thumb, that the volume increases
the statistics and helps reducing the noise does not apply to fluctuations. For higher than second
order fluctuations increasing the volume actually makes the signal worse for a fixed number of
configurations. Currently there are continuum extrapolated results for all second order fluctuations
[14, 15] and for some fourth order ones [16, 17], including the baryon number kurtosis. There also
exist calculations for some of the sixth [18] and eight order cumulants [19], too.

There are three main uses of fluctuations: exploring finite µ with Taylor expansion, deter-
mining the dominant degrees of freedom of the system and determining freezout parameters of
heavy-ion collisions. Let us now discuss them in detail.

2.1 Finite µB with Taylor expansion

Expanding an observable in a chemical potential results in expansion coefficients, that can be
computed with marginal effort, if the fluctuations are already known. Thus knowing eg. baryon
number fluctuations allows obtaining results at µB > 0, which circumvents the infamous sign prob-
lem. Due to the aforementioned numerical difficulties, this is only a solution for small µB’s. This
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Figure 4: The v1,v2 observables signalize the breakdown of the hadronic description [23].

technique made possible to determine important observables related to finite µB. The curvature of
the transition line starting at µB = 0 was determined in leading order in µB:

κ =−Tc
∂Tc

∂ µ2
B

∣∣∣∣
µB=µQ=0,µS=−µB/3

=

{
0.059(2)(4) BNL-Bielefeld based on Nt = 4,8 [20],

0.059(18) WB continuum extrapolated [21].

Also the leading order µB correction to the equation of state at is known [22].

2.2 Dominant degrees of freedom

The sole value of a fluctuation is often used as an indicator to tell about the dominant degrees of
freedom in the system. For example let us consider the following two combinations of fluctuations
[23]:

v1 = χ
BS
11 −χ

BS
31 ,

v2 = (χS
2 −χ

S
4 )/3+2χ

BS
13 −4χ

BS
22 +2χ

BS
31 .

From the assumption, that the system is composed of uncorrelated particles, that carry integer
baryon number and strangeness, it follows, that v1 and v2 vanish. One such model, that satisfies
this condition is the standard Hadron Resonance Gas. This observable can be determined in lattice
QCD, see Figure 4. For small temperatures it is zero supporting the assumption. For larger tem-
peratures it starts deviating from zero, so we conclude, that the system cannot be a composition
of uncorrelated particles carrying integer charges for T & 160 MeV. For high temperatures similar
observables can be constructed. They can be used to test whether the dominant degrees of freedom
carrying strangeness have the same quantum numbers as free strange quarks. These investigations
were reported by Schmidt [24].

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
0
1
4

QCD at non-zero temperature ... Kalman Szabo

Figure 5: The flavor hierarchy of the QCD transition: strange degrees of freedom “dehadronize” at a higher
temperature than the light [17].

An interesting observation was reported by Borsanyi [25]. The characteristic temperature
values of fluctuations, that are related to strange quarks, are typically ∼ 15 MeV higher, than those
related to light quarks. This is demonstrated on Figure 5, where beside the already defined v2 the
authors also plot

(χu
2 −χ

u
4 )/3+2χ

Bu
13 −4χ

Bu
22 +2χ

Bu
31 ,

which is obtained by replacing the µS-derivations in v2 with µu-derivations. This latter is the
chemical potential, that is coupled to the number of up quarks. The separation of the light and
strange quark curves and respective characteristic temperatures is evident from the plot. It can
be seen in many other fluctuation combinations, too. The authors call this finding as the flavor
hierarchy of the QCD transition [17].

2.3 Ab-initio determination of freezout parameters

The two central question of heavy-ion collision experiments are whether the system created in
these collision is thermal equilibrated, and if yes, what are the corresponding parameters, ie. the
temperature and chemical potential values.

To obtain these parameters statistical hadronization models are widely used (see eg. [26]), in
which the numbers of the outcoming hadrons are fitted with simple Bose or Fermi distributions.
The so obtained temperature and chemical potential values are called freezout parameters, below
this temperature one expects no change in the number and type of particles. A problem with this
approach is, that the typical freezout temperature turns out to be Tf ∼ 160 MeV, which is inside the
transition region of QCD, where the use of a non-interacting hadronic description is questionable.

Last year it has been realized, that conserved charge fluctuations can solve this problem and
using lattice QCD one can determine freezout parameters in an ab-initio way [27]. Let us first
consider the experimental side, where we start with two lead ions, each of which carries B = 207,
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Q = 82 and S = 0. After the collision the outgoing particles will also have the same total charges,
since these are conserved quantum numbers (considering only the strong interaction). So what
exactly fluctuates? In order to get fluctuations, one has to consider a subsystem, ie. particles
coming only from a small part of the system. This is defined by imposing kinematical constraints
on the outgoing particles. There is no constraint any more on the charges of a subsystem, charges
can flow in and out, the measured values will be different from one event to the other. These are
the event-by-event fluctuations [28].

By relating event-by-event fluctuations to the fluctuations measured on the lattice one can
answer the two central questions of heavy-ion collisions:

1. The four unknown parameters, T, µB, µQ and µS, can be determined by using four conditions:
we require, that for four observables the experimental and lattice values be equal. The so
obtained parameters are called ab-initio freezout parameters. Ab-initio, since nothing but the
QCD Lagrangian is assumed. Freezout, since they reflect the state of the system, after which
there was no change in the number of charges.

2. Measuring observables other than the previous four can be used to decide the question about
the equilibrium. If for other fluctuations the experimental and lattice values are still equal,
then the equilibrium hypothesis gets more support. If there is a discrepancy, then the fluctu-
ations cannot have a thermal origin.

Additionally one can also plot the freezout parameters for different experiments onto the
temperature-chemical potential plane and see how it is related to the QCD transition line. This
can be used to design fluctuation based signatures for experiments [29], in order to ease the loca-
tion of the QCD endpoint on the transition line (if it exists).

The BNL-Bielefeld collaboration has proposed a concrete way to extract the freezout param-
eters by matching experimental and lattice data [27]. Using

〈S〉= 0 and
〈Q〉
〈B〉

=
82
207

one can express µS and µQ as the function of the other two parameters: T and µB. To determine
these two one chooses two fluctuations, the so-called thermometer and the baryometer, for which
it is required, that their experimental and lattice values be equal. A choice, that is convenient both
from experimental and lattice point of view, is based on charge fluctuations:

〈δQ3〉/〈Q〉 as thermometer and

〈Q〉/〈δQ2〉 as baryometer,

where δQ = Q−〈Q〉. Note, that in principle the fluctuations also depend on the size of the system;
this dependence is linear, if the system is large enough. In order to cancel this unknown factor,
it is advantageous to work with fluctuation ratios. The WB collaboration has recently presented
high-precision continuum extrapolated data for these two observables [25], on Figure 6 we use
them to to illustrate the temperature and chemical potential determination. On the upper panel
the thermometer is shown as the function of temperature. The yellow band is the experimentally
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Figure 6: By matching experimental and lattice data for the thermometer (left) and baryometer (right) one
can extract the freezout temperature and chemical potential [25].

measured value, the black points are the lattice results. From the equality of the two we get an
upper bound on the freezout temperature Tf . 157 MeV. The lower panel shows the baryometer
as the function of the chemical potential. The horizontal lines are the experimental values for
different beam energies, equating with the lattice result yields eg. µ f & 95 MeV for the smallest
beam energy on the plot.

Wagner presented a plot of the BNL-Bielefeld collaboration featuring the extracted freezout
parameters and the QCD transition line on the µB−T plane. This is shown on Figure 7. There are
two different beam energies corresponding to the left and right panels of the plot. For each beam
energy there are four different freezout parameter determinations: the black is the old approach
based on statistical hadronization models. The colored ones are the newly proposed ab-initio free-
zout parameter determinations: the red and blue ones are based on charge fluctuations, the greens
are based on matching lattice baryon number fluctuations to the experimental proton number fluc-
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Figure 7: Freezout parameters and the QCD transition line on the µB−T plane (plot from Wagner’s talk).

tuations (note, that a matching using baryon number would require the detection of neutral baryons,
which is an uneasy task). There is some disagreement between the different determinations, which
is partly due to the preliminary status of the experimental data, partly to the mismatch of baryon
and proton numbers. All freezout parameters are nicely consistent with the QCD transition line
(yellow band), suggesting that the freezout takes place at the transition.

The main message of this section, that fluctuations provide a model-independent way to extract
freezout parameters in experiments and the first attempts have already been taken.
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Figure 8: The Columbia-plot: the order of the transition as the function of the light and strange quark
masses. Only the two red points are known for sure.

3. Columbia-plot

A traditional topic in lattice thermodynamics is the order of the transition in the chiral limit
with various number of flavors. The status is usually summarized in form of the Columbia-plot
[30], Figure 8, which shows the order as the function of the light and strange quark masses. There
are only two points, which are known with high confidence: the physical point is a crossover and
the pure SU(3) theory has a first order transition. The rest of the plot is a prediction of an effective
field theory, first advocated by Pisarski and Wilczek [31, 32].

3.1 Where is the first order transition in n f = 3?

In case of three degenerate flavors the effective theory has a first-order transition. If this also
holds in QCD, then there should be a non-zero pion mass at which the first order transition turns
into crossover. The search of this critical pion mass mc

π has already a long history, many simulations
have been carried out with staggered fermions. Decreasing the lattice spacing and/or improving the
lattice action decreases the critical pion mass. The current best searches were not even able to find
a first order region, only an upper bound on mc

π was possible:
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Nt action mc
π [MeV] reference

4 unimproved 260 [33, 34]
6 unimproved 150 [34]
4 p4 70 [35]
6 stout . 50 [36]
6 HISQ . 45 [37]

A serious shortcoming of all these staggered studies is, that although the pseudo Goldstone pion
mass could be decreased at a fixed Nt , the root mean squared pion mass practically does not change
below some quark mass. In the above studies it was always mRMS

π & 400 MeV.
A study with n f = 3 Wilson fermions was presented by Nakamura, the critical pion mass was

found to be at mc
π ∼ 500 MeV. If it holds, it would mean, that the negative result of the staggered

simulations really lies in the too large RMS pion mass: a slap in the face of these simulations.

3.2 The role of the axial symmetry in the n f = 2 case

In case of two degenerate flavors even the effective theory prediction becomes ambiguous, it
depends on the strength of the U(1)A axial anomaly at the temperature of the SU(2)L× SU(2)R

chiral restoration. If the anomaly is strong enough, then the transition is second order in the O(4)
universality class. If the anomaly is weaker, then one might get a first-order transition. In case
of a complete restoration even another second order transition, now in the U(2)L×U(2)R/U(2)V
universality class, is possible [38].

One way to study the restoration of the axial symmetry is to measure the difference of the
pseudoscalar (π ∼ uγ5d) and scalar (δ ∼ ud) correlators:

〈π(x)π(0)〉−〈δ (x)δ (0)〉.

Another approach is to look at the near-zero eigenmodes of the Dirac-operator, their absence should
also be a signature of the axial symmetry restoration. There are several groups investigating along
these lines partly with contradicting results:

U(1)A restored? fermion lattices group,presenter
no domain-wall 8 · {16,24,32}3 hotQCD [7], Schroeder
no overlap on staggered 8 ·323 Bielefeld, Sharma [39]
yes overlap 8 ·163 JLQCD [40], Taniguchi [41]
yes domain-wall 6 ·163 TW-QCD, Chiu [42]

For a definite conclusion one would like to have extrapolations to infinite volume, chiral limit and
continuum limit, none of the calculations can provide all three.

3.3 Direct determinations suggest second order for n f = 2

The current best evidence for a second order transition comes from the BNL-Bielefeld collab-
oration. Ding presented [43] an update of the results with highly improved staggered quarks at one
lattice spacing down to a pseudo Goldstone pion mass of mπ ∼ 80 MeV (it is actually a n f = 2+1
simulation with a physical strange quark). No signal of a first order transition has been found. The
chiral condensate for different quark masses and temperatures nicely collapse to a single scaling
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Figure 9: Scaling plot of the chiral condensate assuming, that the the transition in second order in the two
flavor chiral limit [43].

Figure 10: QCD transition with domain wall fermions at the physical point, the plot shows the chiral
susceptibility as the function of the temperature [7].

curve assuming, that the transition is O(4) second order in the chiral limit (see Figure 9). As it
has already been mentioned, a shortcoming of this approach is, that with staggered quarks it is
questionable to carry out a chiral limit before the continuum extrapolation.

There is an emerging segment of studies with non-staggered fermions. The most impressive
example to date is the work of the hotQCD collaboration [7]. Domain-wall fermions are used on
upto 8 ·323 lattices. The pion mass is gradually decreased, there are runs even with physical pion
mass; the strange mass is set to the physical value. It has been decided to boost this even further:
Schroeder presented runs on a 8 · 643 lattice at mπ ∼ 100 MeV! No sign of a first order transition
has been found, yet. As Figure 10 shows the peak of the chiral susceptibility at the physical point is
Tc ∼ 155 MeV. This is the first fully independent confirmation of the previously disputed staggered
result (see Section 1.2).

The WB collaboration also investigates the transition with chiral fermions (overlap fermion,
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Figure 11: Phase diagram in the imaginary µ-quark mass plane for n f = 2. Imaginary µ simulations helped
to determine the order of transition in the chiral limit: it is first order [48]. Note, that the lattice is very
coarse, Nt = 4.

[44]). The main focus is on the continuum limit, there are now four lattice spacings at a pion mass of
mπ ∼ 320 MeV. These results also support the universality: there is a nice agreement with previous
staggered data. There are also simulations with non-chiral fermions: the tmfT collaboration uses
twisted mass fermions [12], the Frankfurt-Mainz group Wilson fermions [45]. None of them are
conclusive on the order of the transition in the chiral limit, yet.

3.4 Imaginary µ approach says first order in n f = 2 on a coarse lattice

All previous approaches use the same strategy: simulate with gradually smaller pion masses in
the crossover region and hope, that at some pion mass the transition turns into first order. However
there is not even a slightest clue about the value of the critical pion mass. The problem with this,
that one cannot write an honest proposal to get CPU time for such a project, because for that one
would have to know how small pion masses are to be simulated.

An interesting alternative approach, which might circumvent this problem, arises by consider-
ing the phase diagram at imaginary chemical potential µI . The idea was discussed first by D’Elia
and Sanfilippo [46], it was systematically developed by de Forcrand and Philipsen [47]. Instead of
going down with the pion mass at µI = 0 in the crossover region, one turns on the chemical poten-
tial at a fixed pion mass. It can happen, that the transition gets stronger and eventually turns into
first order at a critical pion mass mc

π(µI). If this point is found, then one just has to follow, what
happens with mc

π(µI) as the chemical potential goes back to zero. This strategy was successfully
used to determine the n f = 2 order of the transition on Nt = 4 unimproved staggered lattices: it is
first order [48].

This result contradicts previous direct determinations with improved actions (see previous
subsection), which find no existence of a first order region. What might seem a contradiction first,

14
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Figure 12: Transition temperatures, defined from two different observables, as the function of the magnetic
field.

fits actually nicely into the effective theory picture. Staggered fermions on coarse lattices have
serious cutoff effects in the axial symmetry breaking and a weak or non-existent axial term in the
effective theory actually favors a first-order transition. So the order of the transition can easily be
first order on coarse lattices without improvement, and turn out to be second order on finer lattices
and/or with improvement.

Ejiri presented an approach [49], which is similar in spirit. Increasing the number of flavors
also makes the transition stronger and the same procedure can be applied as for imaginary µ .

4. Magnetic field

The rising star among the topics of recent years is lattice QCD at finite magnetic field B. It
has gained momentum after realizing, that spectator particles in non-central heavy-ion collisions
produce extreme large magnetic fields (∼ 1015T ). This field induces a charge current, if there is an
imbalance between left and right handed particles, this is the chiral magnetic effect, [50]. This can
be used to test the non-Abelian nature of the strong interaction. On the lattice on a fixed instanton
background the chiral magnetic effect can be nicely demonstrated [51]. On “real” configurations
the effect is more complex, it has been studied by Buividovich et al [52], Yamamoto [53] and in
two color QCD by Ilgenfritz et al [54].

Thermodynamical properties at finite B have been extensively studied. The common wisdom
about the transition temperature was, that Tc increases with B. This was even supported by first
lattice studies by D’Elia et al [55]. The continuum extrapolation, carried out by Bali et al [56], has
changed the picture completely, the result is shown on Figure 12: Tc gets smaller with increasing B.
The order of the transition has also been investigated: there is no volume dependence in the chiral
susceptibility, also the width of the peak stays constant with B. The transition remains therefore a
crossover upto the largest magnetic field that was studied so far on the lattice

√
eB∼ 1 GeV.
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Figure 13: Temperature dependence of the chiral condensate showing the inverse magnetic catalysis around
the transition [57].

The common wisdom about the transition temperature can actually traced back to the be-
haviour of the chiral condensate ψψ at finite B. Previously it was expected, that a magnetic cataly-
sis takes place for all temperatures, which means, that the ψψ increases with B. As current lattice
studies show (see Figure 13), this is indeed the case for small temperatures, however around the
transition an opposite effect, the inverse magnetic catalysis can be observed: ψψ decreases with B
[57]. This then results in the decrease of the transition temperature. A closer look at magnetic catal-
ysis and inverse magnetic catalysis was presented by Kovacs [58]. The magnetic field dependence
of the chiral condensate comes from two sources [59]:

〈ψψ〉 ∼
∫

TrD−1(B) ·detD(B).

There is a “valence” contribution TrD−1(B), which indeed always increases with B due to the
increase in the eigenvalue density of the Dirac-operator on a fixed gauge background. This was
known even before lattice studies. However there is also a “sea” contribution: it takes into account
the change in ψψ due to the change of the typical gauge backgrounds. It can both increase or
decrease with the magnetic field. This second contribution was not taken into account in previous
qualitative analyses, it has been first caught in lattice QCD simulations. It can actually compensate
the catalytic effect of the valence contribution yielding an inverse magnetic catalysis in total [58].

An interesting question is, what would a piece of quark-gluon plasma do, if we approached
it with a magnet? Would it be attracted or repelled by the magnet? Is it a para- or a diamagnetic
material? The answer can be given by calculating the sign of the magnetic susceptibility:

ξ (T ) =
T
V

∂ 2

∂ (eB)2

∣∣∣∣
0

logZ =

{
> 0 para

< 0 dia

The renormalization of this quantity was given in Appendix A of Reference [60] and it follows that
at zero temperature ξ (0) = 0. The derivative is somewhat cumbersome on the lattice, since B can
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only be changed in discrete steps on a periodic lattice [61]. There are three groups calculating ξ (T )
at finite temperature, in three different ways. Bonati presented a technique using a finite difference
method [62]. DeTar was showing results using a non-conventional definition of the lattice B field
combined with Taylor-expansion [63]. Endrodi utilized two approaches to obtain the B dependence
of logZ [64]: one based on calculating anisotropies, the other on a novel type of integral method.
All yield the same result: the quark-gluon plasma is a paramagnetic medium. This paramagnetic
property might increase the elongation of the plasma produced in non-central heavy ion collisions
[65].
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