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The frequently discussed strongly interacting gauge theory with a fermion flavor doublet in the

two-index symmetric (sextet) representation of the SU(3) color gauge group is investigated [1–3].

In previous studies [3] the chiral condensate and the mass spectrum were shown to be consis-

tent with chiral symmetry breaking (χSB) at vanishing fermion mass. The recently reported

β -function [4] is not inconsistent with this observation, suggesting that the model is very close to

the conformal window and a light “Higgs impostor” could emerge as a composite state. In this

work we describe the methodology and preliminary results of studying the emergence of the light

composite scalar with 0++ quantum numbers.
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1. Introduction

The newly discovered Higgs-like particle with decay modes close to that of the Standard Model

brings new focus to the search for theoretical frameworks. An example is the light composite scalar

as a viable interpretation of the discovery. Nearly conformal gauge theories serve as the theoretical

laboratories for credible realization of such a scenario [1–3, 5–13]. In this work we investigate the

minimal realization with a fermion flavor doublet in the two-index symmetric (sextet) representa-

tion of the SU(3) color gauge group (reviewed in [14, 15]) close to the conformal window. The

smallness of the β -function [4] implies either the existence of a conformal fixed point or a slowly

walking scenario [16, 17]. Consistency with χSB at vanishing fermion mass, reported in [3, 18],

would require the sextet model to remain just below the conformal window with a very small but

non-vanishing β -function. As suggested by [1–3], this model with the simplest composite Higgs

mechanism leaves open the possibility of a light scalar state, possibly as the dilaton state of broken

scale invariance. With or without the dilaton interpretation, such a state could serve as a Higgs

impostor. In this work we report preliminary results in an attempt to address these important prob-

lems.

2. Methodology

The quantum numbers of the f0 meson match those of the 0++ state. Close to the conformal

window, the f0 meson is not expected to be similar to the counterpart in QCD. If it turns out to be

light, it could replace the role of the elementary Higgs particle. The two types of 0++ operators,

the fermionic one and the gluonic one (0++ glueball), are expected to mix in the ground state. Such

mixing is ignored in this work and will be discussed in future reports. Only fermionic operators

are discussed here.

Flavor-singlet fermionic correlators have fermion-line connected and fermion-line disconnected

contributions from fermion loop diagrams. The latter one is often known as the disconnected di-

agram and denoted by D(t) at time separation t. The connected diagram is the same as that of

the non-singlet correlator and is denoted as Cnon−singlet(t). The f0 correlator Csinglet(t) is defined

as Csinglet(t) ≡Cnon−singlet(t)+D(t). The positive definite nature of the transfer matrix guarantees

the spectral decomposition of Csinglet(t) in terms of the energy levels m0++

i with the parity partners

m0−+

j for staggered fermions. On a lattice with temporal extent T ,

Csinglet(t) = ∑
i

bi cosh(m0++

i (T/2− t))+(−)t ∑
j

b′j cosh(m0−+

j (T/2− t))+vev2 (2.1)

≈ b0 cosh(m0++

0 (T/2− t))+(−)tb′0 cosh(m0−+

0 (T/2− t))+vev2

at large t, where m0++

0 and m0−+

0 correspond to m f0
and mηSC

respectively . To evaluate the discon-

nected diagram, one needs to calculate quark propagators that start and end on the same spacetime

site. These propagators are stochastically estimated to avoid costly O(V ) inversions. Both con-

nected and disconnected diagrams are estimated by these propagators in the staggered formalism.

We introduce Z2 noise sources on the lattice as follows. Each source is defined on individual time-

slice t0 and color a. The ones defined on even spatial sites are denoted by ηa
[E](t0) and the ones
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Figure 1: Test on N f = 12 fundamental SU(3) model. The tree-level Symanzik-improved gauge action

with staggered fermions [20] is used and the HMC algorithm is employed. Here we choose β = 2.20 and

the fermion mass am = 0.025. We use 200 gauge configurations separated by 20 MD time units. (Left) A

typical non-singlet correlator (red points) has a non-oscillating contribution from a0 (fitted as blue curve)

and an oscillating contribution from the parity partner πsc (fitted as magenta curve). The red curve is the

combination of the two fits. (Center) A typical singlet correlator has a non-oscillating contribution from

f0 (fitted as blue curve) and the oscillating contribution ηSC is not detectable within statistical fluctuation.

(Right) Our results agree with results of latKMI collaboration [21] within comparable accuracy [15]. The

magenta curve indicates the mπ value for comparison.

defined on odd sites are denoted by ηa
[O](t0). It can be viewed as a “dilution” scheme which is fully

diluted in time and color and even/odd diluted in space [19]. The corresponding quark propagators

with destination site (~x1, t1) are defined as ϕ[E,a,t0,U ](~x1, t1) and ϕ[O,a,t0,U ](~x1, t1) respectively. The

diagrams are then computed from the relations

Cnon−singlet(t) = (−)t+1+~x1·~n· (2.2)

〈Tr(ϕ[E,a,t0,U ](~x1, t0 + t)ϕ†
[E,a,t0,U ](~x1, t0 + t)−ϕ[O,a,t0,U ](~x1, t0 + t)ϕ†

[O,a,t0,U ](~x1, t0 + t))〉U,t0,η ,

D(t) =
N f

4
m2·

〈Tr(ϕ[E,a,t0+t,U ](~x1, t0 + t)ϕ†
[E,a,t0+t,U ](~x1, t0 + t)+ϕ[O,a,t0+t,U ](~x1, t0 + t)ϕ†

[O,a,t0+t,U ](~x1, t0 + t))·

Tr(ϕ[E,a,t0,U ](~x2, t0)ϕ
†
[E,a,t0,U ](~x2, t0)+ϕ[O,a,t0,U ](~x2, t0)ϕ

†
[O,a,t0,U ](~x2, t0))〉U,t0,η ,

in which N f = 2, U designates the gauge links,~n=(1,1,1), and the identity TrM−1 =mTr(M†M)−1

is used, in which m is the fermion mass and M is the Dirac matrix in the staggered formalism. In

our calculation different noise sources are used for each choice of index E/O, a, t0 and each gauge

configuration. Fig. 1 shows a test of this method performed in the N f = 12 fundamental SU(3)

model, which is either conformal or nearly conformal. Our results are consistent with results the

latKMI group obtained using similar techniques within comparable accuracies [21]. The f0 mass

is found to be light in the N f = 12 model, providing first evidence that a light 0++ state can emerge

in strongly interacting gauge models.

3. Spectroscopy Analysis

Our simulations use the tree-level Symanzik-improved gauge action with two-flavor staggered
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Figure 2: Preliminary results on 323 × 64 lattices at β = 3.20. (Top left) A typical non-singlet correlator

can be fitted well with non-oscillating a0 contribution and oscillating πSC contribution. (Top right) A typical

D̃(t) can be fitted well with a single mD. This can be identified as m f0 as explained in text. No oscillating

contribution is detectable within errors. (Bottom) Preliminary f0 masses at different fermion masses. Higher

statistics and more comprehensive analysis are required for a more robust extrapolation to the chiral limit.

fermions in the sextet representation of the SU(3) gauge group. The RHMC algorithm is employed.

For molecular dynamics time evolution we applied multiple time scales and the Omelyan integra-

tor. Fig. 2 shows the preliminary results at β ≡ 6/g2 = 3.20. There are 135 gauge configurations

separated by 20 MD time units. Autocorrelations are monitored by the time histories of effective

masses and correlators. The top left plot shows a typical non-singlet correlator, which can be fitted

well by the ansatz:

Cnon−singlet(t) = c0(cosh(ma0
(T/2− t))+(−)tc1 cosh(mπSC

(T/2− t))) (3.1)

as expected. Here ma0
is the a0 mass, mπSC

is the mass of the parity partner. Since the vev2 of

D(t) is irrelevant, we analyze the subtracted disconnected diagram D̃(t)≡ D(t)−D(T/2)(top right

plot). Empirically no oscillation is detected within error. It can be fitted well with the ansatz:

D̃(t) = c0(cosh(mD(T/2− t))−1), (3.2)
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with mD < ma0
as a general empirical observation. Comparing Eq. 3.2 and 2.1 in the large t limit,

the identification m f0
≈mD can be made empirically, as long as mD <ma0

. In other words, mD from

fitting D̃(t) alone provides the estimate of the lowest state of 0++ that couples to the fermionic op-

erator. This state can be identified as m f0
instead of other excited levels, since it is reasonable to

assume that the ground state of 0++ overlaps with the fermionic operator. A more comprehensive

0++ spectroscopy including the mixing with gluonic operators requires careful variational analysis

and is beyond the scope of this work.

We define a three-point effective mass meff as follows:

D̃(t)+2D̃(t +1)+ D̃(t +2)

D̃(t −1)+2D̃(t)+ D̃(t +1)
(3.3)

≡
cosh(meff(T/2− t))+2cosh(meff(T/2− (t +1)))+ cosh(meff(T/2− (t +2)))−4

cosh(meff(T/2− (t −1)))+2cosh(meff(T/2− t))+ cosh(meff(T/2− (t +1)))−4

and fit it as a constant over a selected t-range. Thermalization is monitored by ensuring stability of

the fitted masses along the trajectory. The autocorrelation among gauge configurations is reduced

by measuring on well-separated configurations. A principle component analysis is performed by

discarding very small eigenvalues or eigenvalues with too large relative errors in covariance ma-

trices. The bottom plot of Fig. 2 shows the preliminary f0 masses at different fermion masses, in

comparison with the a0 masses. The analysis uses configurations separated by 20 MD time units.

Although much higher statistics is required for more robust extrapolation to the chiral limit, it is

clear that m f0
is much lower than ma0

and, in the chiral limit, m0++ ∼ (1− 3)F , translating into a

range of 250 to 750 GeV. According to [22], this mass range for f0 is sufficiently low to be further

downshifted by the top quark loop self energy to make it compatible with the experimentally-

observed Higgs state.

Although the fitting strategies described above are reasonable and serve well the purpose of

the preliminary study, there are two main issues to be addressed for reliable results. It is well-

known that along the Markov chain, the tunneling of topology is slow. The sensitivity of the fitted

mass values of f0 to the slowly changing topology is still not clear. According to our preliminary

data shown in Fig. 3 , such effects seem to be insignificant. However, when higher statistics are

available, this needs to be investigated more carefully. The existence of a light f0 state makes the

extrapolation to vanishing fermion mass difficult. The low-lying f0 state will interact with the pion

and hence requires the modification of χ-PT.

4. Conclusion and Outlooks

The 0++ state in the sextet representation of the SU(3) model with N f = 2 fermions is studied.

Stochastic estimation is employed and only the fermionic operator is used. A light f0 mass is ob-

tained as a preliminary result, providing the first necessary step for the realization of the composite

Higgs mechanism with a light Higgs particle. While the preliminary results are encouraging, there

are a few important issues to be addressed in the analysis. In addition to topological effects and

modified χ-PT, the mixing between fermionic and gluonic operators is also ignored in this work.
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Figure 3: Investigating any topological charge Q dependence of fitted m f0 for different segments along

the RHMC trajectory. (Left) Topological charge history along the trajectory. Q is measured at gradient

flow step t f = 10 at c = 0.3 [23]. (Right) Fitted values of m f0 using gauge configurations indicated by the

horizontal extents of the boxes. The configurations are separated by 20 MD time units. Boxes of the same

color contain the same number of configurations. It is observed that although Q changes slowly along the

trajectory, the fitted m f0 remains statistically the same. This may indicate that the dependence is insignificant.

However a reliable conclusion requires a more systematic study with higher statistics. Possible effects from

thermalization and autocorrelation should also be taken into account.

If the lowest 0++ state overlapping with the gluonic operator is light near the conformal window,

such mixing in the ground state is expected to be significant. This will be investigated by a de-

tailed variational analysis. Also, a careful analysis of finite volume and cutoff effects is required

to extrapolate to infinite volume and continuum limits. All these studies are ongoing and will be

reported in future publications.
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