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Partition function zeros steer the critical behavior of a system. Studying four-flavor lattice QCD
at finite temperature and density with the Wilson-clover fermion action and the Iwasaki gauge ac-
tion using a phase-quenched fermion determinant, we combine statistics from multiple chemical
potentials to improve sampling of the configuration space, and aim at unraveling the movement
of zeros in finite systems. Preparing for further investigations, we discuss methods and criteria
used to sieve through complex parameter space spanned by (Re µ, Im µ) and (Re µ, Imβ ), and
present statistically robust zeros of the partition function.
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1. Introduction

Analyses of partition function zeros may pave the way to the critical point of QCD at finite
temperature and density [1, 2]—if executed with care [3]. Danger lurks in the thermodynamic
limit with finite statistics, where zeros would appear on the real axis, a manifestation of the “sign
problem”. With sufficient statistics, however, we can investigate unimpaired zeros of finite systems
and infer the thermodynamic limit.

We study the finite temperature and density ensembles generated with a phase-quenched fermion
determinant [4], using four fermion flavors of the Wilson-clover action and the Iwasaki gauge action.
Reweighting from simulations at multiple µ values,1 we locate zeros of the partition function. We
present methods and criteria for a statistically robust zero from combined simulations, and discuss
our results.

2. Ensembles and reweighting

We use multi-ensemble reweighting [5] to combine ensembles with various chemical poten-
tials, µ , at two combinations of the bare lattice coupling and the inverse quark mass, (β , κ) =
(1.60, 0.1371) and (1.58, 0.1385), with lattices of a temporal length, Nt = 4, and spatial volumes,
V = 63, 6 ·6 ·8, 6 ·8 ·8, 83, and 103 (only at the stronger coupling). To maximize the overlap and
reduce the reweighting noise, we employ ensembles with µ values close to the transition/cross-over
region, listed in Table 1. We compute action differences due to changing µ using the first four
terms from the Taylor expansion of the logarithm of the fermion determinant with respect to µ/T .
Allton et al. [6] implemented µ-reweighting from zero density ensembles, whereas we reweight
from multiple ensembles simulated at values of µ that are close to the region of interest.

Reweighting results from these ensembles near transition/cross-over region reproduce phase-
reweighting only results from ensembles simulated at other µ values. Shown in Figure 1, at each
simulation point with (β , κ) = (1.60, 0.1371) and V = 83, the phase-reweighted quark number
density deviates within the statistical uncertainty from the multi-ensemble µ-reweighted value.

3. Partition function zeros and reliability

For a finite system simulated with real parameters, zeros of the partition function manifest
themselves in the vanishing of both real and imaginary parts of the average weight from reweighting

V µ = 0.2 0.205 0.21 V µ = 0.13 0.14 0.15 0.16
63 16000 16000 16000 63 5000 5000 5000 5000
6 ·6 ·8 32000 6 ·6 ·8 5000 5000 5000 5000
6 ·8 ·8 90000 6 ·8 ·8 5000 13000 13000
83 90000 120000 90000 83 27500 27500 27500

103 34780 34280 11390

Table 1: Number of configurations used in multi-ensemble reweighting for (β , κ) = (1.60, 0.1371) on the
left and (β , κ) = (1.58, 0.1385) on the right.

1We omit the lattice constant, a, for brevity.
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Figure 1: The lower panel shows, for (β , κ) = (1.60, 0.1371) with V = 83, the quark number density from
each ensemble subtracted by the multi-ensemble (µ = 0.2, 0.205, and 0.21) reweighted value, with the
reweighted standard deviation shown as the gray band. The upper panel shows the weight statistics, with the
partially indiscernible shadow band representing the corresponding standard deviation, where w represents
the real part of the weight and 〈·〉 indicates multi-ensemble average.
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Figure 2: Location of the first partition function zero with V = 83. Shown in the left panel is (β , κ) =
(1.60, 0.1371); the right panel (β , κ) = (1.58, 0.1385).

with complex parameters. In practice, by reweighting with a real parameter, p, and an imaginary
part of some parameter, q, we minimize the squared absolute value of a ratio of total weights, w,

Znorm =
∑U w(p, iq; U)

∑U w(p, iq = 0; U)
, where ∑U is over all configurations. (3.1)

It is effectively a ratio of partition functions with excessive oscillating terms removed.
In this paper, we report on zeros of partition functions in the parameter space of (p, q) being

either (Re µ, Im µ) or (Re µ, Imβ ).
We observe consistency across results from reweighting of a single ensemble and multiple

ensembles. Figure 2 compares multi-ensemble reweighting to single-ensemble reweighting in the
complex µ plane. Combining three ensembles achieves more than a 40% reduction in statistical
uncertainties.

To assess the numerical reliability of the partition function zeros, we seek constraint from the
uncertainty of the partition function with a complex parameter, x, reweighted from x0,

Z ′ ≈
∫

dOeO(x−x0) Prob0[O] =
1

Z0

∫
dUe−S0+O0(x−x0) , (3.2)
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Figure 3: Distribution of quark number, Nq =
∂ lnZ

∂ (µ/T ) , for (β , κ) = (1.58, 0.1385) with V = 63. Top panel
shows the histogram at µ = 0.139 by reweighting from all configurations shown in the bottom.
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Figure 4: Estimated standard deviation against block size, for the location of the first partition function zero
at (β , κ) = (1.58, 0.1385), with V = 63 on the left and 83 on the right. Both axes are in logarithmic scales.

where the observable O = − ∂S
∂x , with Prob0[O] the distribution of O at x0. It approximates the

partition function up to the first derivative of the action, though the relation using β is exact [7]. Away
from real zeros generated by two approximately Gaussian peaks, with L independent and identically
distributed configurations, we derive the confidence region, |x− x0|, satisfying |Z ′|> kσ(|Z ′|),

∑
j

∣∣x j− x j,0
∣∣2 σ2(O j)< ln

[( L
k2 +1

)/
2
]
, (3.3)

where σ2(O j) is the variance of a single peak of its distribution, with x j denoting multiple parameters.
For µ-reweighting, we look at the reweighted probability distribution function of the quark

number, Nq =
∂ lnZ

∂ (µ/T ) , and estimate its width. Figure 3 shows an example for (β , κ) = (1.58, 0.1385)
with V = 63. The bottom panel is a scatter plot of the measured value with restored phase from
complex weight w, by multiplying w

Rew for each configuration. These four ensembles contribute to
the reweighted histogram in the upper panel, from which we estimate the width of a single peak,
σ(Nq) = 2.5(3), at µ = 0.139, assuming two Gaussian peaks with approximately equal widths.

To estimate the number of independent configurations with minimum effect of autocorrelation,
we investigate the block size effects on the jackknife estimated standard deviation of the location of
the first partition function zero away from the real axis. Blocking saturates the estimated standard
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Figure 5: |Znorm| and its standard deviation as a color map, at (β , κ) = (1.58, 0.1385), with V = 63.

deviation after increasing the block size up to about 100, both for 20,000 configurations for V = 63

from four ensembles, and for 82,500 configurations for V = 83 from three ensembles, shown in
Figure 4. The estimated error oscillates within about 10%, with increasing block sizes. Unreliable
estimations seem to occur when the number of blocks becomes . 40; we hence choose statistical
errors estimated by jackknife with a block size of 50.

We estimate the number of independent configurations as the total configuration number
divided by 100(20) (considering 20% error) following the above observation. For the parameter
set, (β , κ) = (1.58, 0.1385), with V = 63, we have an independent sample size, L∼ 200(40). For a
determination of |Znorm| larger than three times of its standard deviation, k = 3, applying Eq. (3.3),
we get the confidence region with |∆µ|< 0.16(2).

We compare the estimated confidence radius with the statistical uncertainty of |Znorm|, from
the jackknife method using the actual data. As an example for (β , κ) = (1.58, 0.1385) with V = 63,
we compute |Znorm| on a grid of the complex µ plane, with the grid spacing δ µ = 0.002. Figure 5
shows contours of |Znorm|, with visible isolated zeros, which should be expected from an analytic
function. The color map shows the relative size of the absolute value with respect to its standard
deviation, on a scale from 0 to 5σ , with the pure white color denoting |Znorm|> 5σ . In the right
side of the figure, where no real zeros of partition function from two approximated Gaussian states
would be expected, the cyan 3σ region is slightly larger than the edge of the confidence radius from
Gaussian approximation, |∆µ|= 0.16(2), centering at µ = 0.139. This is probably caused by the
approximation of the partition function. The confidence radius excludes the area where statistical
noise is too large to reliably estimate |Znorm|, and zeros located near or outside of the radius are
mostly likely to be either spurious ones or affected by noise.

Zeros within the confidence radius, on the other hand, are from the cancellation of two states
with high reliabilities. The first zero away from the real axis in Figure 5 is clearly a good signal,
since it is away from the boundary of our estimated confidence region, and all values surrounding
this zero is determined at more than 5σ level. The second and third one, being very close to each
other, require greater care to properly interpret their meaning. We observe that, (a) values between
these two are badly estimated |Znorm|< σ , (b) some of the jackknife blocks contain only one zero
in that region, and (c) their locations differ within statistical uncertainties estimated by the jackknife
method. We thus consider only the lower one as the real zero and the higher one of these two as
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Figure 6: |Znorm| and its standard deviation as a color map, at (β , κ) = (1.58, 0.1385), with V = 83.
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Figure 7: First and second zeros of partition functions in the plane of a complex valued µ , with (β , κ) =
(1.60, 0.1371) on the left and (β , κ) = (1.58, 0.1385) on the right. Same colored symbols are from V = 63,
6 ·6 ·8, 6 ·8 ·8, 83, and 103 (right panel only), counting from top to bottom.

spurious.
As a further example to compare with the results from V = 63, we show the results from V = 83

in Figure 6. With increasing volume, the confidence region inferred from the color map shrinks
compared to Figure 5, and more spurious-zero suspects can be seen. Zeros, on the other hand, are
also closer to the real axis. We can reliably determine the first two zeros, as |Znorm| surrounding
them are nonzero with a confidence of more than 5σ .

We use Jackknife estimated uncertainties of zero locations in our analysis, as they are consistent
with the approximated confidence region and offer a cross-check for the reliability of zero locations.

We also apply the above technique to zeros of partition functions obtained with the real valued
µ and the imaginary part of β .

4. Results and discussions

We present results of partition function zeros from µ reweighting with additional imaginary
part of µ or imaginary part of β . Figure 7 and 8 shows zero locations in the complex µ plane and in
the real µ and imaginary β plane, respectively.

Despite more ensembles with (β , κ) = (1.60, 0.1371), zeros with (β , κ) = (1.58, 0.1385)
possess smaller uncertainties. This is likely due to larger phase factors of the fermion determinant
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Figure 8: First three zeros of partition functions in the plane of a real valued µ and the imaginary part of
β , with (Reβ , κ) = (1.60, 0.1371) on the left and (Reβ , κ) = (1.58, 0.1385) on the right. Same colored
symbols are from V = 63, 6 ·6 ·8, 6 ·8 ·8, 83, and 103 (right panel only), counting from top to bottom.

at the stronger coupling, which goes through a transition at smaller µ/T . In addition, zeros at
the stronger coupling appear to align on a single curve, contrasting with zeros spread out more at
the weaker coupling. This behavior may indicate better statistics at the stronger coupling, or may
suggest a feature of zero locations for the system enters a regime of a strong first-order transition.

We will analyze zero behaviors in a separate detailed report soon.
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