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The term Tensor Network States (TNS) refers to a number of families of states that represent

different ansätze for the efficient description of the stateof a quantum many-body system. Matrix

Product States (MPS) are one particular case of TNS, and havebecome the most precise tool for

the numerical study of one dimensional quantum many-body systems, as the basis of the Density

Matrix Renormalization Group method. Lattice Gauge Theories (LGT), in their Hamiltonian

version, offer a challenging scenario for these techniques. While the dimensions and sizes of

the systems amenable to TNS studies are still far from those achievable by 4-dimensional LGT

tools, Tensor Networks can be readily used for problems which more standard techniques, such

as Markov chain Monte Carlo simulations, cannot easily tackle. Examples of such problems

are the presence of a chemical potential or out-of-equilibrium dynamics. We have explored the

performance of Matrix Product States in the case of the Schwinger model, as a widely used

testbench for lattice techniques. Using finite-size, open boundary MPS, we are able to determine

the low energy states of the model in a fully non-perturbative manner. The precision achieved by

the method allows for accurate finite size and continuum limit extrapolations of the ground state

energy, but also of the chiral condensate and the mass gaps, thus showing the feasibility of these

techniques for gauge theory problems.
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1. Introduction

Tensor Network States (TNS) are ansätze for the descriptionof quantum many-body systems,
whose common characteristic is the efficient encoding of theentanglement pattern present in the
physical states. The Matrix Product State (MPS) ansatz [1, 2, 3, 4] explains the enormous success of
the Density Matrix Renormalization Group (DMRG) algorithm[5, 6] at computing ground states
of quantum spin chains. The insight gained from quantum information theory [7] allowed the
extension of tensor network (TN) methods to higher dimensions and dynamical problems. In the
last years, TN algorithms are hence seen as a very promising approach for strongly correlated
quantum many-body problems, with the potential to attack questions which are hard for other
techniques, such as Markov chain Monte Carlo simulations, in particular, fermionic or frustrated
spin systems, and out-of-equilibrium dynamics.

Quantum field theories, in particular in their lattice formulation, open a particularly interesting
realm of application for these non-perturbative techniques. Lattice Gauge Theory (LGT), despite
its enormous theoretical and technical development, has limited applicability when dealing with
dynamics or finite density, and TN methods could in the futurerepresent an alternative approach,
capable to overcome some of these problems. Although several TNS approaches have already been
tried on different lattice field theory problems [8, 9, 10, 11], there is not yet a systematic exploration
of the power of these techniques to tackle the questions thatstandard LGT methods face.

In [11] we showed the suitability of the MPS ansatz to describe not only the ground state, but
also the excitations of the lattice Schwinger model, and to produce continuum limit extrapolations
of the mass spectrum whose precision can compete with that ofother numerical techniques. De-
spite the very precise estimation of the energy, other observables [12] might be more sensitive to
truncation errors and yield a considerably worse estimation. Here, we complement the study in [11]
with the explicit calculation of the chiral condensate, andshow that the MPS method also provides
accurate continuum limit extrapolations, beyond the precision reached by perturbative [13, 14] or
non-perturbative methods [15, 16].

2. The model

To probe the suitability of MPS methods for LGT problems, thelattice Schwinger model [17,
18] in its Kogut-Susskind Hamiltonian formulation [19] is used as test bench. Via a Jordan-Wigner
transformation, the fermionic degrees of freedom can be mapped to spin variables [20]. The ad-
ditional gauge degrees of freedom sitting on the links are constrained by Gauss’ law, which in
the case of open boundary conditions (OBC) considered here completely fixes the electric field up
to a constant. This is enough to fully eliminate the gauge variables and work with the following
dimensionless long-range spin model [21]

H = x
N−2

∑
n=0

[

σ+
n σ−

n+1+σ−
n σ+

n+1

]

+
µ
2

N−1

∑
n=0

[1+(−1)nσ z
n]+

N−2

∑
n=0

[

ℓ+
1
2

n

∑
k=0

((−1)k+σ z
k)

]2

, (2.1)

where the Hamiltonian parametersx= 1
g2a2 andµ = 2m

g2a are expressed in terms of the lattice spac-
ing, a, the coupling,g, and fermion massm. The parameterℓ represents the boundary electric

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
3
2

Matrix Product States for Lattice Field Theories M. C. Bañuls

field on the link to the left of site 0, which can describe the background field. For OBCℓ is non-
dynamical, and in the following we choose it to be zero. Therefore, we can use a tensor product
spin basis|i0 . . . iN−1〉, with im = {0,1}, to describe the states of the system.

3. Chiral condensate

All observables can be written in terms of spin operators. Inparticular, the fermionic conden-
sate,〈Ψ(x)Ψ(x)〉/g reduces to the ground state expectation value ofΣ̂ =

√
x

N ∑n(−1)n 1+σz
n

2 . The
naively computed chiral condensate,Σ = 〈GS|Σ̂|GS〉 diverges logarithmically in the limita → 0
for non-vanishing fermion mass [15, 16, 22]. This divergence is already present in the free case,
where the theory is exactly solvable. Indeed, in the non-interacting case (2.1) reduces to the XY
spin model in a staggered magnetic field, whose ground state energy, in the case of OBC, reads

E0 =
µ
2 N−∑N/2

q=1

√

µ2+4x2 cos2 qπ
N+1. The expectation value of̂Σ can then be computed from the

dE0
dµ as

Σfree=

√
x

N

N/2

∑
q=1

µ
√

µ2+4x2 cos2 qπ
N+1

. (3.1)

We may use the exact value of the free condensate to subtract the divergence from the ob-
servable computed in the interacting case. Our numerical procedure extracts the continuum limit
by first making the physical volume infinite at constant lattice spacing (equivalent to the thermo-
dynamic limit of the discrete problem) and then extrapolating to x → ∞. The divergence is only
present in the second step, when the lattice regulator vanishes, while the first limit can be evaluated
via a finite volume extrapolation. In the free case we can actually extract analytically the exact
value ofΣfree in the bulk, at fixed(m/g, x), when (3.1) can be evaluated as an integral, to yield

Σ(bulk)
free (m/g,x) =

m
πg

1
√

1+ m2

g2x

K

(

1

1+ m2

g2x

)

, (3.2)

where K(u) is the complete elliptic integral of the first kind [23]. Expanding this expression for
x→ ∞ shows a divergent logarithmic term12π

m
g logx. The divergence can be substracted from the

interacting chiral condensate after the infinite volume extrapolation using the exactly computed free
condensate (3.2). The interacting case may nevertheless introduce further logarithmic corrections
to higher orders in1x that need to be taken into account in the continuum limit extrapolation.

4. Matrix Product State Methods

We approximate the ground state of the Hamiltonian (2.1) by aMPS, i.e. a state of the form
|Ψ〉 = ∑d−1

i0,...iN−1=0 tr(Ai0
0 . . .A

iN−1
N−1)|i0 . . . iN−1〉, whered = 2 is the dimension of the local Hilbert

space for each chain site. The state is completely determined by theD-dimensional matricesAi
k,

and hence the bond dimension,D, controls the number of parameters in the ansatz. A MPS ap-
proximation to the ground state with fixedD can be found variationally by successively minimizing
the energy with respect to each of the individual tensors, and iterating the procedure until conver-
gence [4, 6]. The MPS ansatz is known to provide good approximations to the ground states of
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Figure 1: Convergence of the condensate value with the bond dimension, D, for x= 100 andN = 300 for
the massless (left) and a massive case (right). To better appreciate the convergence, we plot the difference
between the observable at each bond dimension and the one obtained for the maximumDmax= 140 (respec-
tively ΣDmax = 0.174663 and 0.484859). Dashed lines show the extrapolation in 1/D (linear from the largest
values ofD), with the final value displayed as a star. The error is estimated from the difference between this
value and the one for the largest computedD.

local gapped Hamiltonians, but has been used to more generalmodels. In [11] we found, indeed,
that the ansatz is appropriate for the Schwinger model, accurately reproducing not only the ground
state energy, but also the mass spectrum.

Applying the variational MPS algorithm with open boundary conditions we obtained an ansatz
for the ground state for various sets of parameters(m/g,x,N,D). We studied four different values
of the fermion mass,m/g = 0, 0.125, 0.25, 0.5, and for each of them probedx ∈ [20, 600]. In
order to extract the bulk limit for each given(m/g, x), we solved the ground state problem for five
different system sizesN ≥ 20

√
x, to ensure large enough physical volumes. For each system size,

we ran the algorithm for bond dimensionsD∈ [20, 140], and stopped the iteration when the relative
change in energy from one sweep to the next was belowε = 10−12.

After the variational algorithm has converged for a particular set of parameters,(m/g, x, N, D),
we obtain a MPS approximation to the ground state, from whichwe can easily compute expectation
values of local operators or their tensor products. In orderto extract the continuum limit properties
for different fermion masses, we need to perform successiveextrapolations of the corresponding
observables in the bond dimension,D → ∞, the system size,N → ∞, and the lattice spacing1√x =

ga→ 0. A detailed description of the numerical method and the corresponding error analysis can
be found in [11], where we performed this procedure to extract the the ground state energy density
and the mass spectrum.

Here we repeat the analysis for the expectation value ofΣ̂ in the ground state. Our results show
very good convergence in the bond dimension,D, and we can reliably estimate the observable for
a given set of parameters(m/g,x) and a given system size,N, from the linear extrapolation of the
largest computed bond dimensions, as illustrated in Fig. 1.From these values, we perform a finite
size extrapolation using a linear functionf (N) =A+ B

N , which perfectly describes our observations
(Fig. 2). The error of the thermodynamic limit is estimated from the width of the 68% confidence
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Figure 2: Finite volume extrapolation of the (substracted) condensate for x = 100 in the case of massless
fermions (left) andm/g= 0.25 (right). We fit the results to a linear function in 1/N, shown by a dashed line.
The extrapolated value is indicated by a star.
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Figure 3: Substracted condensate as a function of 1/
√

x for fermion massesm/g= 0 andm/g= 0.25. The
error of each point (in most cases smaller than the markers) reflects the uncertainties of the linear finite size
extrapolations. In the massless case, the exact resultΣ0 = eγ/(2π3/2)≈ 0.159929 is indicated on the vertical
axis. The dashed lines corresponds to the fit of the whole computed range,x∈ [20, 600].

interval for the fitted parameterA.
From this thermodynamic values, for each given(m/g, x) we subtract the exact free condensate

in the bulk, (3.2). Finally, the continuum limit extrapolation can be attained from all computedx
values. According to the discussion in the previous section, divergent loga terms are not present
in the substracted condensate, but there might be residualaloga corrections introduced by the
interaction, and which cannot be substracted. We thus use for the fit the form

f (x) = A+F
logx√

x
+B

1√
x
+C

1
x
, (4.1)

which, as seen in Fig. 3, describes our computed data extremely well. Finally, we obtain for the
condensate the following values.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
3
3
2

Matrix Product States for Lattice Field Theories M. C. Bañuls

Substracted condensate

m/g MPS with OBC exact

0 0.159930(8) 0.159929

0.125 0.092023(4) -

0.25 0.066660(11) -

0.5 0.042383(22) -

5. Discussion

We have extended our previous study of the Schwinger model using MPS to the computation
of the chiral condensate. Determining this quantity in the continuum is a more challenging task
than finding energy levels, as evidenced by the few numericalestimations found in the literature.

We obtain a remarkably accurate values of the condensate in the massless case, where we
can compare our estimate to the exact result. For the massivecases, there are not many previous
calculations in the literature, or the ones available correspond to different masses and thus do not
allow for a direct comparison to our results. In the case ofm/g= 0.125, we are in good agreement
with the approximate value 0.0929, from [14].

Our results show the feasibility of the MPS ansatz to describe the physical states relevant
for a lattice gauge theory problem. The technique allows us to reach precisions that suffice for
accurate finite size and continuum extrapolations, and to identify the asymptotic approach to the
continuum. These results pave the way to further applications of MPS or more general tensor
network techniques to more challenging problems in the context of LGT.
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