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models with discrete variables have a finite-dimensional Hilbert space per link, the continuous
gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases.
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anti-charge pairs. A phase transition between two distinct confined phases is weakly first order
and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy
physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously
irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-
Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum
simulators to study phenomena that are not accessible using Monte Carlo simulations such as the
real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone
boson.
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1. Introduction

Lattice gauge theories have made fundamental contributions to our understanding of strongly
correlated systems. In particle physics, the SU(3) lattice gauge theory with Wilson and staggered
fermions, and more recently with twisted mass, overlap, and domain wall fermions, are exten-
sively used to investigate the properties of Quantum Chromodynamics (QCD). In condensed matter
physics, the study of deconfined quantum critical points, as well as of spin liquids, employ U(1)
lattice gauge theories. The toric code studied in the condensed matter and the quantum information
community is a Z(2) lattice gauge theory.

Non-perturbative studies of lattice gauge theories almost exclusively use Monte Carlo sim-
ulations in Euclidean space-time. The conventional formulation is due to Wilson, using parallel
transporter matrices on the links of the lattice and matter fields on the sites. This method has
been very successful in several respects, such as in the ab-initio calculation of the hadron spectrum
as well as the nature of the finite temperature transition of strongly interacting matter in QCD.
However, there are certain important problems where this method fails. Two of the most impor-
tant examples are the physics at non-zero baryon density and the real-time evolution of quantum
systems. In these cases, the weights to be sampled with Monte Carlo become negative, or even
complex. The importance sampling fails, thus leading to a sign problem.

The rapid development of the field of ultra-cold atoms in optical lattices suggests a remark-
able way out of this problem. The basic idea that the use of quantum variables could speed up the
simulation tremendously was conceived early on [1]. Special purpose quantum computers, known
as quantum simulators [2], are used as digital [3] or analog devices [4] to simulate strongly cou-
pled quantum systems. Recently, the use of quantum simulators to study the real-time evolution
in gauge theories and their phase structure in the context of particle physics has been proposed
[5, 6, 7, 8, 9, 10, 11, 12, 13]. The idea behind the quantum simulator constructions is that the
quantum mechanical nature of quarks and gluons can be embodied by ultra-cold atoms in optical
lattices. The interactions between the atoms can be tuned, so that they follow a properly designed
Hamiltonian. The quantum degrees of freedom evolve according to this Hamiltonian and the sign
problem does not arise. A number of important models, such as the Bose-Hubbard model and the
toric code, have already been quantum simulated using similar methods [14, 15].

In this context, the use of alternative formulations of gauge theories is highly desirable, the
principal motivation being the identification of models with a finite-dimensional Hilbert space at
each link or site which can be realized with a few quantum states of a cold atom system. The
Hamiltonian formulation of Wilson’s lattice gauge theory has an infinite-dimensional Hilbert space
at each link due to the use of continuously varying fields. Quantum link models (QLMs) provide
such an alternative formulation of gauge theories [16, 17, 18, 19, 20] which realize continuous
gauge symmetry with generalized quantum spins associated with the links of a lattice. They consti-
tute an extension of the Wilsonian formulation of lattice gauge theories. Indeed, in certain limiting
cases, Wilson’s lattice gauge theories can be obtained from quantum link models [21]. Because
they use discrete degrees of freedom, the Hilbert space of quantum link models at every link is
finite-dimensional in a completely gauge invariant way. This enables a direct connection with
ultra-cold atoms in optical lattices, where the generalized quantum spins can be represented by
these atoms. Therefore, quantum link models are ideal candidates to be implemented in cold atom
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systems.
The regularization of a d-dimensional quantum field theory formulated with discrete quan-

tum variables in (d + 1)-dimensions (instead of using classical fields) is known as the D-theory
formulation [20]. The classical fields in the d-dimensional quantum field theory emerge as low-
energy effective degrees of freedom of the discrete variables when the (d +1)-dimensional theory
has a massless Coulomb phase. When the extra Euclidean dimension is made small in units of
the correlation length, a d-dimensional theory emerges by dimensional reduction. For example,
in the D-theory formulation of QCD, the confining gluon field emerges by dimensional reduction
from a deconfined Coulomb phase of a (4+1)-d SU(3) quantum link model. Chiral quarks can be
included naturally as domain wall fermions located at the two 4-d sides of a (4+1)-d slab [19].

Quantum link models also provide a platform for developing efficient simulation algorithms.
As they are formulated with discrete variables, they are natural candidates to develop cluster al-
gorithms. The phase diagrams of these models are obviously interesting to study. Since they are
generalized lattice gauge theories, new phases arise, which have not been observed in Wilson-type
lattice gauge theories. Also, once quantum simulators are being built, they need to be validated
against controlled classical computations. By developing methods to simulate quantum link mod-
els, static quantities can be calculated to benchmark the quantum simulators. Finally, methods
developed for simulating link models might be applicable to solve some of the sign problems in
traditional Wilson-type theories at non-zero density.

In this article, we report on a study of the (2+1)-dimensional U(1) quantum link model and
show that, despite its structural simplicity, it has a very rich phase diagram [22]. This model has
exotic confining phases where the confining string joining a static charge-anti-charge pair splits
into distinct fractionalized flux 1

2 strands. There are two such phases, each characterized by a
distinct pattern of discrete symmetry breaking, separated by a weak first-order transition. Around
the phase transition point, there is a spontaneously broken approximate global SO(2) symmetry
arising dynamically. The resulting pseudo-Goldstone boson can be described via an effective field
theory. When realized with quantum simulators, this model would be able to demonstrate the
power of gauge theory simulators by quantum simulating the dynamics of the confining string and
the pseudo-Goldstone boson.

2. The (2+1)-d Quantum Link Model

In the Wilson formulation of U(1) lattice gauge theory, the Hamiltonian takes the form

H =
g2

2 ∑
x,i

e2
x,i−

1
2g2 ∑

�

(u�+u†
�), (2.1)

where the second sum is over all plaquettes and the plaquette variables are u� = ux,iux+î, ju
†
x+ ĵ,i

u†
x, j,

ux,i = exp(iϕx,i) ∈U(1). In this formulation they are operators acting in an infinite-dimensional
Hilbert space for each link. The electric field operator ex,i describes the kinematics of ux,i,

ex,i =−i∂ϕx,i , [ex,i,uy, j] = ux,iδxyδi j, [ex,i,u
†
y, j] =−u†

x,iδxyδi j, [ux,i,u
†
y, j] = 0. (2.2)

The Hamiltonian is invariant under gauge transformations since it commutes with their generators
Gx = ∑i(ex,i− ex−î,i). A general gauge transformation takes the form u′x,i = eiαxux,ie−iαx+î .
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The (2+ 1)-d U(1) quantum link model is formulated in a similar way. Its Hamiltonian can
be written as

H =
g2

2 ∑
x,i

E2
x,i− J ∑

�

[
U�+U†

�−λ

(
U�+U†

�

)2
]

(2.3)

where the sum is over all plaquettes and the plaquette variables are defined in terms of quantum
link operators, U� := Ux,iUx+î, jU

†
x+ ĵ,i

U†
x, j. In contrast to Wilson’s lattice gauge theory, the opera-

tors in the U(1) QLM are given by a finite-dimensional representation of the embedding algebra
SU(2), thus leading to a finite-dimensional Hilbert space per link [18]. The quantum link variables
are quantum spin raising operators Ux,i = S1

x,i + iS2
x,i = S+x,i for the electric fluxes Ex,i = S3

x,i, while
the operators U†

x,i are flux lowering operators S−x,i. The operators Ux,i, U†
x,i and Ex,i obey the same

commutation relations as their counterparts in Wilson’s lattice gauge theory, except that the quan-
tum link operators do not commute with their adjoint, i.e. [Ux,i,U

†
x,i] = 2Ex,i. The Hamiltonian

in (2.3) is again gauge invariant as it commutes with the generators of infinitesimal U(1) gauge
transformations,

Gx = ∑
i

(
Ex,i−Ex−î,i

)
. (2.4)

The link operators transform as U ′x,i = eiαxUx,ie−iαx+î under gauge transformations. Physical states
|ψ〉 again have to be gauge invariant, i.e. they obey the Gauss law Gx|ψ〉 = Qx|ψ〉, where Qx is
zero unless one places a static charge at the point x.

In this work we consider the simplest possible representation for the quantum links, namely
the spin 1

2 representation. This leads to a 2-dimensional Hilbert space per link, thereby ensuring
the feasibility of exact diagonalization studies, as will be explained below. The E2

x,i term then be-
comes a trivial additive constant and is therefore omitted in the following. The second term in the
Hamiltonian (2.3) flips loops of electric fluxes flowing around elementary plaquettes and annihi-
lates non-flippable plaquettes as depicted in Fig. 1. In the spin 1

2 representation, the third term,
proportional to λ , is known as the Rokhsar-Kivelson (RK) term which counts flippable plaquettes.

This can be seen by noting that U2
� =

(
U†
�

)2
= 0, since a single spin 1

2 cannot be raised more than

once. The remaining terms are of the form U�U†
�, i.e. they project onto the subspace of flippable

plaquettes.

U = U = 0

Figure 1: Action of the plaquette operator on flippable plaquettes (left) and non-flippable plaquettes (right).
The arrows indicate the direction of the electric flux Ex,i =± 1

2 .

The Gauss law together with the finite-dimensional link Hilbert space reduces the number of
allowed states per site from 24 = 16 down to the 6 configurations shown in Fig. 2. Adding static
charges reduces this number even further. Without this reduction, it would not be practical to apply
exact diagonalization methods on reasonably large lattices.
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Figure 2: All gauge invariant configurations of fluxes at a site x.

The Hamiltonian respects the usual geometric symmetries of the square lattice, e.g. it is invari-
ant under translations by multiples of the lattice spacing a and under 90 degrees rotations. For our
purposes, it suffices to consider translations T only. The lattice translation invariance characterizes
each energy eigenstate by its lattice momentum p = (p1, p2) ∈ (−π,π]2. Additionally, the charge
conjugation C symmetry is also present. It replaces Ux,i by U†

x,i and reverses all electric fluxes, i.e.
Ex,i goes to −Ex,i. The associated quantum number is the charge conjugation parity C = ±. An-
other important global symmetry is the U(1) center symmetry on periodic lattices associated with
“large” gauge transformations. These are given by transformations that commute with the Hamil-
tonian but cannot be expressed through “small” periodic gauge transformations. On an L1× L2

lattice they are generated by

Ei =
1
Li

∑
x

Ex,i. (2.5)
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Figure 3: The total number of states in the (2+ 1)-d U(1) quantum link model, both with and without
imposing Gauss’ law (denoted by green "×" and red "+" respectively). Even though the Gauss law constraint
drastically decreases the number of states, the rise in the number of states is still exponential in the volume.
The number of states in individual flux sectors are shown by blue stars and filled squares. Only lattices with
an even extent allow the flux sectors (0,0) and (1,1).

3. Exact Diagonalization and Cluster Algorithm Tools

We have studied the model using both Exact Diagonalization (ED) and Quantum Monte Carlo

5
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simulations (QMC). Exact Diagonalization studies were performed on lattices with spatial extents
4×4, 4×6 and 6×6. These systems comprise of 32, 48, and 72 quantum link spins, respectively.
While the sizes may seem small, this already competes with the largest spin systems that have
been subjected to ED on PC clusters. Naively, this would have implied Hilbert spaces with 232,
248, and 272 states, respectively. The Gauss law constraint, however, reduces the number of states
considerably, which makes the study of systems with as many as 72 spins feasible. Fig. 3 shows
the number of states as a function of the volume with and without applying Gauss’ law. In these
studies, the Hamiltonian was separately diagonalized in each flux winding number sector, thereby
reducing the Hilbert space further than with imposing only the Gauss law constraint.

We also developed an efficient cluster algorithm to simulate the model in the dual representa-
tion. A duality transformation can be used to transform the Hamiltonian of the (2+1)-d quantum
link model into that of a (2+1)-d quantum height model. This transformation is an exact rewriting
of the partition function in terms of new degrees of freedom, which are quantum Z(2) variables
located at the centers of the plaquettes. As shown in Fig. 4(a), every flux configuration can be
mapped to a height configuration. A configuration of quantum height variables

hA
x̃ = 0,1; hB

x̃ =±1
2
, (3.1)

located at the dual sites x̃ = (x1 +
1
2 ,x2 +

1
2), is associated with a flux configuration

Ex,x+î = [hX
x̃ −hX ′

x̃+î−1̂−2̂]mod2 =±1
2

; X ,X ′ ∈ {A,B}. (3.2)

The cluster algorithm is then constructed by dividing the lattice into two sublattices A and B (illus-
trated by shaded and unshaded squares in Fig. 4 (a)). The U(1) Gauss law constraint is implemented
in the cluster building rules, which ensure that only the configurations with net zero charge at the
vertices are generated. The details of the dualization procedure as well as the algorithm will be
presented elsewhere [23].

We define a 2-component order parameter (MA,MB), associated with the even and odd sublat-
tices A and B, to characterize the different phases of the model. These distinguish the two different
symmetry breaking patterns we encountered in our study. In terms of the height variables associ-
ated with the center of the plaquettes, they are defined as

MX = ∑
x̃∈X

sX
x̃ hX

x̃ ; where sA
x̃ = (−1)(x̃1−x̃2)/2 and sB

x̃ = (−1)(x̃1−x̃2+1)/2. (3.3)

Under C and T they transform as CMA = MA, CMB =−MB, T MA =−MB, T MB = MA. It should be
pointed out that ±(MA,MB) represents the same physical configuration because shifting the height
variables to hX

x̃ (t)
′ = [hX

x̃ (t)+1]mod2 leaves the electric flux configuration unchanged. The various
transformations are illustrated in Fig. 4(b).

4. Phase Diagram, Order Parameters and Confining Strings

The phase diagram of the model, shown in Fig. 5, was studied as a function of both λ/J and
T/J, where T is the temperature. For convenience, we work with units in which J = 1. At zero
temperature, the model has two phases characterized by different symmetry breaking patterns for

6
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Figure 4: (a) Mapping of an electric flux configuration (shown with arrows on the links) to a height con-
figuration (shown with + and − variables at the centers of the plaquettes). Every time one crosses a flux
pointing right or upwards, the orientation of the plaquette variable is changed, while it remains unchanged if
a left or downward pointing flux is crossed. (b) The effect of the symmetry transformations C and T on the
two-component order parameter (MA,MB). The former is equivalent to a reflection on the MA axis, while the
latter is an anti-clockwise rotation by π

2 . Performing T twice is equivalent to rotating by π , and leads back
to the starting configuration, since −(MA,MB) is an equivalent "gauge" copy of (MA,MB).

1

λ
0−1

T

Deconfined

λc

l
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M

M

MB

A
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A
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M
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ll

l l

l

l

l

l

Confined

l

l

ll

Figure 5: Schematic sketch of the λ −T phase diagram. The insets indicate the location of the peaks in the
probability distribution of the order parameter p(MA,MB).

C and T. For large negative λ , both C and T are spontaneously broken. As λ is increased beyond a
critical value λc, the model undergoes a weak first order phase transition into a phase where T, but
not C, is spontaneously broken.

It is interesting to note that the ED results provide important insights into the phase dia-
gram. Fig. 6 shows the energy gaps of the four lowest energy states. For λ < 1, the ground
state has momentum (0,0) and is even under charge conjugation (i.e. C = +). For λ < λc, the
first excited state has quantum numbers C = −, p = (π,π). Its energy gap to the ground state,
E− ∼ exp(−σ−L1L2), decreases exponentially with the volume L1L2, thus indicating the sponta-
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Figure 6: Energy gaps of the four lowest states on the (6×6) lattice as a function of λ relative to the ground
state energy. The states with energies E+ and E− both have non-zero momenta (π,π), and are degenerate
with the ground state (which has zero momentum and positive C parity) in the infinite volume limit. The
state with energy E− has negative C parity and the state with energy E+ has positive C parity. This implies
that the spontaneous symmetry breaking pattern changes as one crosses λc. The next higher states have
energies E ′± and carry momentum (0,0). They have C parity ± and are used to determine the parameters of
the effective theory, as described in Section 5.
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Figure 7: Finite-volume energy spectrum of the two lowest excitations above the ground state. At λ = −1,
the state with quantum numbers p = (π,π) and C =− degenerates with the ground state (left). At λ = 0,
the state with quantum numbers p = (π,π) and C =+ degenerates with the ground state (right). The ground
state has positive C parity and zero momentum.

neous breakdown of charge conjugation C and the translation T by one lattice spacing (in either
direction). For λ > λc, another state |C = +, p = (π,π)〉 degenerates with the ground state in
the infinite volume limit, i.e. E+ ∼ exp(−σ+L1L2), indicating that C is now restored, while T re-
mains spontaneously broken. The finite-volume scaling of the spectrum indicating these symmetry
breaking patterns is shown in Fig. 7.

These symmetry breaking patterns are clearly distinguished by the two-component order pa-
rameter M = (MA,MB). The probability distribution p(M) has been measured very accurately with
the cluster algorithm and is shown in Fig. 8 for the different cases. At λ = −1, both sublattices
are ordered, giving rise to peaks at the corners of the two-dimensional order parameter plane.
At λ = 0, only one sublattice is ordered, which exhibits peaks on the axes. At λ = λc, there is
an emergent approximate global SO(2) symmetry, which manifests itself by an order parameter
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Figure 8: Distribution of the order parameter (MA,MB) at λ =−1, λc, and 0 at T = 0 (a,b,c), and at λ = 0,
T > Tc (d).

distribution that is nearly circular. There is an emergent pseudo-Goldstone boson which can be de-
scribed in terms of a low-energy effective theory. This is a remarkable phenomenon which mimics
some features of deconfined quantum criticality, widely discussed in the condensed matter litera-
ture [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. At λ = 1 the model reaches its Rokhsar-Kivelson
point. At this point electric flux condenses in the vacuum and the theory deconfines already at zero
temperature.

-80

-50

-20

 10

 40

 25  35  45  55

V
(x

)

x

λ=-1
λ=λc
λ=0

-16

-14

-12

 5  15  25

V
(x

)

T = 2J,λ=λc

Figure 9: The potential between two static charges
±2 separated by the distance (x,x) along a lattice di-
agonal, for λ =−1,λc, and 0, at T = 0, and at λ = λc

for T = 2J.

The phase diagram can also be studied as
a function of temperature. Based on univer-
sality arguments, we expect that, the system
undergoes a Berezinski-Kosterlitz-Thouless
transition into a deconfined Coulomb phase
above a temperature Tc. However, translation
invariance still remains broken as evidenced
by the corresponding order parameter distri-
bution shown in Fig. 8(d). At very high tem-
peratures, we expect all breaking of transla-
tion invariance to disappear.

Since the quantum link model is a gauge
theory in (2+ 1)-dimension, we expect that
it is linearly confining for λ < 1 and T = 0
[35, 36]. A standard way of demonstrating
this is to place a static charge-anti-charge pair
at a certain distance r, and then study the
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Figure 10: Energy density −J〈U�+U†
�〉 in the presence of two charges ±2 for λ =−1 (a), λ = λc (b), and

λ = 0 (c) at T = 0, as well as for λ = 0 at T > Tc (d).

static potential V (r) as a function of r. A linearly increasing potential is an unambiguous sign
for confinement. The string tension σ is given by the slope of the static potential at large distances.
We have studied this by placing static charges Q = ±2 along the lattice diagonal. Our results
shown in Fig. 9 exhibit linear confinement at large distances, even at the phase transition, albeit
with a small string tension σ2 = 0.156(14)J/a (compared to σ2 = 1.97(1)J/a at λ = −1). Since
we insert the charges explicitly in the simulation, our results for the static potential do not suffer
from an exponentially small signal-to-noise ratio at larger charge-anti-charge separations.

Since translation invariance by a single lattice spacing is spontaneously broken in both the
phases at λ < λc and at λ > λc, the resulting confined phases are crystalline. The energy density
−J〈U� +U†

�〉 in the presence of two charges ±2 illustrates the nature of the bulk phases. The
flux string connecting the charges, shown in Fig. 10, separates into four strands of flux 1

2 that repel
each other. The interior of the strands consists of the phase that is stable on the other side of the
transition. Near λc the flux string undergoes topology change by wrapping one strand over the
periodic boundary and materializing an additional strand at the edge of the system, whose interior
then expands to become the new bulk phase (cf. Fig. 10(b)). Viewed as interfaces separating bulk
phases, the strands display the universal phenomenon of complete wetting.

5. Low-energy effective theory near the phase transition

The results for the histograms of the order parameter (MA,MB) naturally lead to the formu-
lation of an effective theory with an approximate SO(2) symmetry in terms of a unit-vector field
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~e(x) = (cosϕ(x),sinϕ(x)) representing the direction of (MA,MB). The action then takes the form

S[ϕ]=
∫

d3x
1
c

[
ρ

2
∂µϕ∂µϕ+δ cos2(2ϕ)+ε cos4(2ϕ)

]
, (5.1)

where we used ∂3 = ∂ct . Here ρ is the spin stiffness and c is the velocity of an emergent pseudo-
Goldstone boson. The δ -term breaks the symmetry down to Z(4) and leads to a small Goldstone
boson mass Mc = 2

√
2|δ |/ρ . The last term ensures that the string tension remains proportional to√

ερ , even at the phase transition. It is thus non-vanishing because in the effective theory the phase
transition happens at δc + εc = 0. The fact that (MA,MB) is equivalent to −(MA,MB) reduces the
emergent symmetry from SO(2) to RP(1). Therefore only states invariant against sign changes of
~e(x) belong to the physical Hilbert space.

By applying the Ginsburg-Landau-Wilson paradigm to the δ - and ε-terms, in mean field theory
one obtains the phase diagram shown in Fig. 11. The two phases realized in the QLM both have
four peaks in the order parameter distribution p(MA,MB), and are separated by a weak first order
phase transition. In addition, there is an intermediate phase with eight peaks, separated from the
other phases by second order phase transitions [22].

l

l l

λ < λc
l

λ > λc

λ=λ c

M

M
A

B

l

AM

l

l l

l

ε

δ

M
A

MB

MB

ll

l l

ll

l l

Figure 11: Phase diagram as a function of δ and ε . The insets indicate the location of the peaks in the
distribution p(MA,MB). The fat and dashed lines are first and second order phase transitions, respectively.
The curved line indicates a possible path taken in the QLM when varying λ .

5.1 Comparison of the effective theory with the exact diagonalization results

Looking at the energy spectrum obtained by the exact diagonalization calculations (cf. Fig.
6), near λc we observe an approximate finite-volume rotor spectrum Em = m2c2

2ρL1L2
for even values

of m. In the effective theory at the phase transition we get the same spectrum. Analyzing the
eigenstates for their quantum numbers, we obtain C = +, p = (0,0) for the ground state m = 0,
C =±, p = (π,π) for the next two states m =±2 and C =±, p = (0,0) for the m =±4 states. All
of this is consistent with the spectrum at λc shown in Fig. 6.
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Figure 12: Global fit of the energy gaps near λpc for E± and E ′± (left) and of the L1L2-dependence of the
crossing points λpc, λ ′+pc , λ ′−pc (right).

By expanding in powers of δL1L2 and εL1L2, we obtain predictions for the energy gaps as
functions of the parameters,

E+ =
2c2

ρL1L2
+

L1L2

4
(δ + ε)+

ρL3
1L3

2
256c2

(
3δ

2 +
11
2

δε +
119
48

ε
2
)
+O(ε3, δ

3) (5.2)

E− =
2c2

ρL1L2
− L1L2

4
(δ + ε)+

ρL3
1L3

2
256c2

(
3δ

2 +
13
2

δε +
167
48

ε
2
)
+O(ε3, δ

3) (5.3)

E ′+ =
8c2

ρL1L2
+

L1L2

16
ε +

ρL3
1L3

2
128c2

(
11
3
(δ + ε)2 +

3
128

ε
2
)
+O(ε3, δ

3) (5.4)

E ′− =
8c2

ρL1L2
− L1L2

16
ε +

ρL3
1L3

2
128c2

(
5
3
(δ + ε)2 +

3
128

ε
2
)
+O(ε3, δ

3) (5.5)

E ′′+ =
18c2

ρL1L2
+

ρL3
1L3

2
512c2

(
9δ

2 +19δε +
409
40

ε
2
)
+O(ε3, δ

3) (5.6)

E ′′− =
18c2

ρL1L2
+

ρL3
1L3

2
512c2

(
9δ

2 +17δε +
329
40

ε
2
)
+O(ε3, δ

3), (5.7)

where the notation is the same as in Fig. 6 and E ′′± refer to the energy gaps of the next excited states.
From the exact diagonalization results we can also extract the level crossing points λpc (crossing
of E+ and E−), λ ′+pc and λ ′−pc (the two crossings of E ′+ and E ′−). According to the effective theory,
they should behave as

λpc = λc +
A

(L1L2)2 +O(
1

L3
1L3

2
), (5.8)

λ
′±
pc = λc±

1
L1L2

√
− 8

c1c2
2
(c3 +λcc4)+

16c2
4

c2
1c4

2L2
1L2

2
− 4c4

c1c2
2L2

1L2
2
+O(

1
L3

1L3
2
), (5.9)

where we used the representations ρ

c2 = c1, δ + ε = c2(λ − λc) and ε = (c3 + λc4). Both the
energy gaps and the behavior of the different λpc are in quantitative agreement with the exact
diagonalization results. A global fit yields λc =−0.359(5), δc =−εc = 0.01(1)J/a2, ρ = 0.45(3)J
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and c = 1.5(1)Ja, where a is the lattice spacing. Fig. 12 shows two exemplary comparisons of the
fitted functions with the values extracted from exact diagonalization.

6. Conclusion

We have shown that even the simplest quantum link model has highly non-trivial physics in-
volving multi-stranded confining strings and an emergent SO(2) symmetry. The quantum link
model studied here is very closely related to a class of models studied in condensed matter physics
with connections to high-Tc superconductivity, known as the quantum dimer models. Our methods
and numerical algorithms can be straightforwardly extended to the dimer model. The correspond-
ing investigation is in progress. Our results also encourage the application of dualization tech-
niques to quantum Hamiltonians for other theories, and, in particular, to Hamiltonians of quantum
link models in higher dimensions. The development of a quantum simulator using optical lattices
to study the dynamical features of this model would be a very welcome and non-trivial step on the
road to quantum simulate QCD.
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