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1. Introduction

The goal of the present study is to obtain the spectrum of bottomonium states using a potential-
model approach, including nonperturbative input from lattice simulations. The bottomonium spec-
trum is a rich one, whose spacings between fundamental levels are similar to those of the char-
monium. This motivates the description by a common potential model [1]. Also, the mass of
the bottom quark is large in comparison with the system energy (the same happens, to a lesser
degree, with charmonium). This allows us to make a nonrelativistic approximation to the Bethe-
Salpeter equation used in the description of bound states of two fermions (see e.g. Ref. [2] and
[3]). More precisely, one makes an instantaneous approximation to the wave function (which leads
to the Salpeter equation), a nonrelativistic approximation to the kinetic term in the Hamiltonian
and a local approximation to the potential. After these approximations, the equation reduces to the
Schrödinger equation.

We require the potential to respect some physical characteristics of the quark-antiquark inter-
actions in QCD. This is usually accomplished by a combination of two behaviors. The first one
refers to the quark-antiquark interaction in the one-gluon-exchange (OGE) approximation (related
to quark-antiquark scattering inside the meson) and is of perturbative nature. The second one, the
property of confinement, may be modeled by a linearly rising function, inspired by lattice QCD
simulations (see Refs. [4], [5] and [6, Fig. 5]). If the free vector-boson propagator is used, the
obtained potential will be the “Coulomb plus linear” or Cornell potential

V (r) = −4
3

αs

r
+ F0 r . (1.1)

Other commonly used potentials are listed in [7, Section 7]. Here we substitute the free gluon
propagator with the one provided in Ref. [8], obtained from lattice simulations of pure SU(2) gauge
theory in Landau gauge. This introduces nonperturbative features into the scattering term of the
potential.

In Section 2 we briefly describe the procedure for calculating the potential from the gluon
propagator. In Section 3 we detail our method for solving the Schrödinger equation for an arbitrary
potential and therefore obtaining the bottomonium spectrum. The results of this method are pre-
sented in Section 4 and we present our conclusions in Section 5. Preliminary results of our study
were reported in [9].

2. Brief Review of Potential Models

The use of potential models in the study of heavy quarkonia is based on the assumption that the
interaction between a heavy quark (namely the charm or the bottom quark) and its antiquark may
be described by a potential. This is inspired by the fact that the Coulomb potential, which may be
obtained as a limiting case from QED, explains with great accuracy bound states of nonrelativistic
systems such as atoms or the positronium.

To obtain the Coulomb potential, one starts by considering an elastic e−e+ scattering process.
Applying perturbation theory in the first-order Born approximation, we obtain the scattering-matrix
element S f i

S f i ≡ 〈 f |i〉 = δ f i + i(2π)4
δ
(4)(Q−P)Tf i , (2.1)
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where Q and P correspond respectively to the final and initial total momentum and Tf i is the scatter-
ing amplitude, which can be computed through Feynman rules. There are two Feynman diagrams
contributing to it, which are shown in Fig. 1.

e+ p2,σ2

e− q1, τ1

e− p1,σ1

e+ q2, τ2

k

e+p2,σ2

e−q1,τ1
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e+q2,τ2

k

Figure 1: Feynman diagrams leading to the Coulomb potential in QED.

These diagrams result in the following scattering amplitude

Tf i =
1

(2π)6
m2√

Ep1Ep2Eq1Eq2

[
−e2 u(q1,τ1)γ

µ u(p1,σ1) Pµν(k) v(p2,σ2)γ
ν v(q2,τ2)

+e2 v(p2,σ2)γ
µ u(p1,σ1) Pµν(k) u(q1,τ1)γ

νv(q2,τ2)
]
, (2.2)

where we follow the notation in [7].
We then make the nonrelativistic approximation, i.e. we impose the kinetic energy of the

system to be much smaller than its rest energy (p � m ∼= E). If the usual photon propagator
Pµν(k) = gµν/k2 is used, we see that the contribution of the second term on the r.h.s. of Eq. (2.2),
which comes from the annihilation diagram, is negligible compared to the first term. Thus, per-
forming a spatial Fourier transform, we recover the familiar Coulomb potential

V (r) = −(2π)3
∫

exp(−ik · r)Tf i(k)d3r = − 1
(2π)3

∫
exp(−ik · r) e2

k2 d3r = −e2

r
. (2.3)

This potential may be used to model the interaction in the positronium. Since we know that
the binding energies will be of the order of eV, while the electron and positron masses are approx-
imately 0.5 MeV, we can expect that the nonrelativistic approximations for the potential will hold.
We may use this potential in the Schrödinger equation to obtain the energy spectrum of the sys-
tem. Notice that the nonrelativistic approximation completely removes spin dependencies of the
potential.

In our work we follow the same procedure, replacing the electron-positron pair by a quark-
antiquark pair and the photon by a gluon. For the gluon propagator we use an expression obtained
from fits of lattice data for pure SU(2) gauge theory in Landau gauge, given in Ref. [8]. The limi-
tation of this method is that, since we apply perturbation theory to obtain the potential, V (r) is not
expected to be a confining potential, even though the propagator used is obtained nonperturbatively.
We model confinement, as usual, by adding to the potential a linearly rising term F0r.

3. Method for Obtaining Bottomonium Masses

We expect that a typical choice of propagator will result in a central potential if we use the
approximations in Section 2. Since our system contains only two particles, the Hamiltonian will
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be essentially the same as the one of the hydrogen atom, written in terms of relative coordinates.
We use separation of variables to isolate the angular dependence of the wave function (which will
be given by the spherical harmonics) and the variable substitution R(r) = f (r)/r to obtain the
Ordinary Differential Equation (ODE) for f (r)

d2 f
dr2 + 2µ

[
E−V (r)−2mb−

l (l +1)
2µr2

]
f (r) = 0 , (3.1)

where µ is the reduced mass and mb is the mass of the bottom quark. Notice the addition of the
rest mass of the particles, which will allow us to compare the eigenenergy directly with masses in
Ref. [10].

Since the potential is arbitrary, it will not usually be possible to find an analytic expression for
the eigenenergies. We therefore use a numerical approach. The algorithm consists in the following
steps:

1. Finding a likely range for the eigenenergies and discretizing this interval in N steps separated
by dE. (We fix the range using the experimental values for the lowest and the highest energy
states.)

2. Numerically solving the ODE in Eq. (3.1) to obtain the function f (r) for each energy. We
use the Numerov method (see Ref. [11, Chapter 3]).

3. Estimating the eigenenergy using the boundary conditions. The functions f (r) will generally
diverge to ±∞, since our guess for E in Eq. (3.1) is not an eigenenergy. If we find that the
sign of this divergence is reversed when changing from En,i to En+1,i, the ith eigenenergy will
be estimated by (En,i +En+1,i)/2. The error is taken as dE/2.

Note that the only free parameter in the potential is the string force F0, but we also leave free the
mass of the bottom quark since, at present, it is not well determined. In fact, different approaches
give different results for mb (for instance, Ref. [10] has two values for it). To find the best values for
these parameters, we adopt a similar strategy used in the calculation of the eigenenergies described
above: we set a range where it is believed the values of the parameters may be and discretize it.
We then compute the eigenenergies for each proposed set of parameters and select the one that best
describes the observed spectrum. The criteria for choosing a set of parameters with this property is
to look for the set that minimizes the residual

R(Parameters) = ∑
i
(Ei−Ei,Experimental)

2 . (3.2)

4. Results

Following the discussion in Section 2, the Feynman diagrams for the bottomonium will be
similar to the ones in the e−e+ scattering shown in Fig. 1. This similarity means that the scattering
matrix will have the same structure. The main difference will be extra factors due to the SU(3)
symmetry of QCD. Considering that the gluon propagator is color-diagonal, i.e. Pab

µν(k) ∝ δ ab, the
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color factors contributing to the scattering diagram and the annihilation diagram will be respectively

c†
1, f

λ a

2
c1,i c†

2,i
λ a

2
c2, f =

4
3

(4.1)

c†
2,i

λ a

2
c1,i c†

1, f
λ a

2
c2, f = 0 , (4.2)

where the vectors c1,2 represent the color states and λ a are the Gell-Mann matrices. Notice that
here the contribution from the annihilation diagram is exactly zero.

The propagator from Ref. [8] has the form

Pab
µν(k) =

C (s2 + k2)

t2 +u2k2 + k4

(
δµν −

kµkν

k2

)
δ

ab . (4.3)

(Values for the normalization constant C and the parameters s, t, u are given in [8].)
By analogy with the QED case considered before, we keep only the first term of the above

tensor structure. Also, this propagator is obtained for Euclidean time and therefore we need to
make the transformation δµν → gµν . (Without this transformation the perturbative term would
be repulsive.) Furthermore, we approximate all energies to the particle mass, which implies
m2/

√
Ep1Ep2Eq1Eq2 = 1. With these approximations, we have

Tf i(k) =−
1

(2π)6

[
4
3

g2
s u(q1,τ1)γ

µu(p1,σ1)gµν

C(s2 + k2)

t2 +u2k2 + k4 v(p2,σ2)γ
νv(q2,τ2)

]
. (4.4)

We need now to compute the factors coming from the spinors. When we impose that the
particles be nonrelativistic, we obtain

u(q1,τ1)γ
µ u(p1,σ1) = δ

µ0
δσ1τ1 (4.5)

v(p2,σ2)γ
ν v(q2,τ2) = δ

ν0
δσ2τ2 . (4.6)

The final scattering amplitude is

Tf i(k) =
1

(2π)6

[
4
3

g2
s

C(s2 + k2)

t2 +u2k2 + k4

]
. (4.7)

We proceed to computing the Fourier transform. The angular integral is easily solved by
assuming that the point r lies on the z-axis. The radial integration can be easily computed through
the residue method. Notice that Eq. (4.7) has four simple poles, one in each quadrant of the complex
plane. The angular integration does not add any new pole to it. These poles are distributed in such a
way that, once one of them is obtained, it is possible to reproduce all others by complex conjugation
and/or multiplication by −1. These symmetries allow one to express the four terms coming from
the residue calculation around each pole as a single term, dependent only on the pole of the first
quadrant. The potential becomes

V (r) = −4
3

g2
s

π2r
ℜ

[
C(s+ k2

1)exp(ik1r)
4k2

1−u4

]
,

k1 = i
√

t exp

[
− i

2
arctan

(√
4t2−u4

u4

)]
. (4.8)
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We implement the algorithm described in Section 3 for quark masses from 4.1 GeV through
4.8 GeV (which includes both masses listed in Ref. [10]). For the string-tension parameter F0, we
search from 0.1 GeV2 through 0.3 GeV2. We apply the same algorithm using the Coulomb plus
linear potential for comparison. The results can be found in Table 1.

mb(MS) = 4.18(3) GeV Potential from F0 = 0.2118(1) GeV2 Coulomb plus F0 = 0.2136(1) GeV2

mb(1S)= 4.66(3) GeV Lattice Propagator mb = 4.5977(1) GeV Linear Potential mb = 4.6090(1) GeV
See [10] R = 0.0436 R = 0.0475

Particle Experimental Calculated Mass Deviation from Calculated Mass Deviation from
State Mass(GeV) (±3×10−4 GeV) Experiment (GeV) (±3×10−4 GeV) Experiment (GeV)
1S* 9.42565(153) 9.5763 0.1507 9.5793 0.1528
2S 10.02326(31) 10.0071 0.0162 10.0029 0.0204
3S 10.3552(5) 10.3317 0.0235 10.3293 0.0259
4S 10.5794(12) 10.6107 0.0313 10.6119 0.0325
5S 10.876(11) 10.8633 0.0127 10.8675 0.0085
6S 11.019(8) 11.0973 0.0783 11.1045 0.0855
1P* 9.89076(82) 9.8595 0.0313 9.8565 0.0343
2P* 10.25410(94) 10.2033 0.0508 10.2009 0.0532
3P 10.530(14) 10.4943 0.0357 10.4949 0.0351
1D 10.1637(14) 10.0743 0.0894 10.0683 0.0954

Table 1: Comparison between the results obtained for the potential extracted using the lattice gluon prop-
agator and the usual Coulomb plus Linear potential. Notice that the states marked with “*” are actually an
average of states with different spin but same orbital angular momentum.

We remark that our obtained values for the quark mass agree much better with the mb(1S) value
from Ref. [10]. The small difference between the results for our potential and for the Coulomb plus
linear potential can traced to the fact that the two potentials are nearly identical, as show in Fig. 2.

Coulomb plus Linear Potential ( VCornell)
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2 4 6 8 10 12 14
r

-3

-2

-1

0

1

2

3

VHrL

5 10 15 20 25 30
r

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

VLGP-VCornell

Figure 2: Plot of the potential obtained using the lattice gluon propagator and comparison with the Cornell
potential (left panel). The computed string tension is only slightly different for the two cases. We also plot
the difference between these two potentials (right panel). In both cases the potentials are given in GeV and
the distances r in GeV−1.
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5. Conclusion

We compute the bottomonium spectrum using a potential obtained from lattice simulations
of the gluon propagator and compare to results using the Coulomb plus linear potencial. We find
very similar behavior, with slightly better agreement with experimental data in the former case.
This might indicate that, although the perturbative treatment removes most of the nonperturbative
features of the scattering contribution to the potential, a small part of them survives this treatment.

We note that the propagator we used was computed for pure SU(2) gauge theory, instead of
(pure) QCD. (Note also that this propagator is determined up to a global constant C, fixed by
normalization.) The good agreement of our results with the experimental spectrum suggests that it
is enough to take into account the SU(3) color structure by including the usual color factor in the
calculation (see Eq. (4.1)).

In our study we do not include effects of spin-spin interaction or spin-orbit interactions, which
can lead to splitting of some energy levels. We have as well additional errors due to our nonrela-
tivistic approach. The main limitation, however, is clearly the use of the OGE approximation in the
scattering calculation, and the need to include the confining term by hand. We nevertheless believe
that the method is useful, especially if an application beyond the OGE approximation can be made.
(We note that a different point of view is presented in a similar study reported in Ref. [12].)
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