
P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
5
6

Systematic Effects at Criticality for the
SU(2)-Landau-Gauge Gluon Propagator

Tereza Mendes∗

Instituto de Física de São Carlos, Universidade de São Paulo,
Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
E-mail: mendes@ifsc.usp.br

Attilio Cucchieri
Instituto de Física de São Carlos, Universidade de São Paulo,
Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
E-mail: attilio@ifsc.usp.br

We analyze data from finite-temperature simulations of the gluon propagator in SU(2) Landau

gauge on large lattices. We argue that the singular behaviorof this quantity around the deconfine-

ment transition, seen in several previous studies, is a lattice artifact.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
1
3
)
4
5
6

Systematic Effects at Criticality for the Gluon Propagator Tereza Mendes

1. Introduction

The gluon propagator is the most fundamental quantity of QCD and its infrared behavior is
believed to be closely related to the phenomenon of color confinement in the theory. In particular,
the Gribov-Zwanziger confinement scenario in Landau gauge [1] predicts a suppressed gluon prop-
agator in the infrared limit (in combination with an enhanced ghost propagator). According to this
scenario, in fact, the gluon propagator should go to zero in the limit of vanishing momentum. These
predictions are investigated by approximate analytic methods such as Dyson-Schwinger equations
and functional renormalization group calculations. At the same time, the lattice formulation can
provide valuable insight into the problem and numerical checks of the predictions. Unfortunately,
the infrared limit corresponds to large lattice sizes, which are computationally demanding. This
issue has turned out to be particularly challenging in Landau gauge, requiring numerical investi-
gations using the largest lattices ever considered (see [2] for a review). Nevertheless, the infrared
limit may be qualitatively studied for pure SU(2) gauge theory and, at the sametime, using very
large lattices might greatly reduce the infamous problem of gauge-fixing ambiguity due to Gribov
copies [3].

Lattice simulations have established that the momentum-space gluon propagatorD(p2) is sup-
pressed in the limit of small momentump, while the real-space gluon propagator violates reflection
positivity. This latter feature, consistent with gluon confinement, is observed for all lattice vol-
umes. On the other hand, whereas a fit ofD(p2) to the Gribov form is possible at moderate lattice
volumes, data obtained using very large lattices (of linear sizeL ≈ 27 fm) revealed thatD(0) is
strictly nonzero. This behavior has been termed “massive”, since it may beinterpreted as a dynam-
ically generated mass for the gluon, and was first proposed as a solution tothe Dyson-Schwinger
equations of QCD in [4]. Several variants of such massive behavior have been used to fit lattice
data for the Landau-gauge gluon propagator. In particular, in [5], very good fits to rational (or
Gribov-Stingl) forms were obtained in the four-dimensional case, as well as for three space-time
dimensions. These fits are shown in Fig. 1. The fitting forms in the 4D and in the 3D cases are
given respectively by

D1(p
2) = C

p2 + d
p4 + u2 p2 + t2 (1.1)

and

D2(p
2) = C

(p2 + d)(p2 + 1)
(p4 + u2 p2 + t2)(p2 + v)

, (1.2)

corresponding (respectively) to three and to four free parameters, inaddition to the global nor-
malization constantC. Noting that the three-dimensional case may be viewed as the infinite-
temperature limit of the four-dimensional case in the transverse sector, onemay be motivated to
look for an interpolation of the above 4D and 3D zero-temperature forms to describe the finite-
temperature data for the propagator.

In this contribution we present final results of our numerical study of the finite-temperature
gluon propagator in the electric sector. We focus on the infrared value ofthe longitudinal propa-
gatorDL(p2) as a function of the temperature. A detailed analysis of our data will be presented
elsewhere [6]. (Preliminary results were reported in [7, 8, 9, 10].)
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Figure 1: Fits of zero-temperature data for the SU(2) Landau-gauge gluon propagator to rational (Gribov-
Stingl) forms in the 4D (left) and 3D (right) cases. Plots extracted from [5].

2. Gluon propagator at finite temperature

As the temperatureT is turned on, we expect to observe Debye screening of the color charge.
In particular, at high temperatures, deconfinement should be felt in the longitudinal (i.e. electric)
gluon propagator as an exponential fall-off at long distances, defininga screening length and con-
versely a screening mass [11]. It is not clear how such a mass would show up around the crit-
ical temperatureTc. At the same time, as discussed above, studies of the gluon propagator at
zero-temperature have shown a (dynamical) mass. One can try to use this knowledge to define
temperature-dependent masses for the region aroundTc. Conversely, the dimensional-reduction
picture (based on the 3D-adjoint-Higgs model) suggests a confined magneticgluon, associated to
a nontrivial magnetic mass. This mass should in turn be obtained from the infrared behavior of the
transverse gluon propagator.

Lattice studies of the Landau-gauge gluon propagator around the deconfinement phase transi-
tion in pureSU(2) andSU(3) theory, as well as considering dynamical quarks, have been presented
in [12, 13, 14, 15, 16, 17, 18, 19]. In the transverse (i.e. magnetic) sector, one sees strong infrared
suppression of the propagator, with a turning point of the curve described by the momentum-space
magnetic propagatorDT(p2) for momentap around 400 MeV. This suppression seems even more
pronounced than in the zero-temperature case discussed in the Introduction. Also,DT(p2) shows
considerable finite-physical-size effects in the infrared limit, as observedfor T = 0. Furthermore,
just as forT = 0, the magnetic propagator displays a clear violation of reflection positivity in real
space. Essentially these same features are seen forDT(p2) at all nonzero temperatures considered.

The longitudinal propagatorDL(p2), on the other hand, shows significantly different behavior
for different temperatures. As soon as a nonzero temperature is introduced in the system,DL(p2)

increases considerably (whereasDT(p2) decreases monotonically). More precisely, for all fixed
temperatures, the curve described byDL(p2) seems to reach a plateau in the low-momentum re-
gion (see e.g. [8]). As the temperature is increased, this plateau increases slightly until, approaching
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the phase transition from below, it has been observed to rise further andthen, just above the tran-
sition temperature, to drop sharply. This has been interpreted as a sign of singular behavior of the
longitudinal gluon propagator aroundTc and, in fact, it has been related to several proposals of
a new order parameter for the deconfinement transition. (Of course, a relevant question is, then,
whether this singularity survives the inclusion of dynamical quarks in the theory [17, 18].)

Let us mention that, at all investigated temperatures, the infrared plateau justdescribed is not
long enough to justify a fit to the Yukawa form

DL(p
2) = C

1
p2 + m2 , (2.1)

predicted at high temperatures. If this were the case,DL(0)−1/2 would provide a natural (tempe-
rature-dependent) mass scale. Note that this value depends also on the global constantC. On the
other hand, Gribov-Stingl forms such as in Eqs. (1.1) and (1.2) above involve complex-conjugate
poles, defining real and imaginary masses (independently ofC). Here we do not show data (or fits)
for DL(p2). Such curves and (preliminary) fits can be seen e.g. in [9]. Instead, wewill look at the
value ofDL(0) (after normalization byC) as a function ofT.

Concerning the longitudinal propagator in real space (see e.g. [9]), positivity violation is ob-
served unequivocally only at zero temperature and for a few cases around the critical region, in
association with the severe systematic errors discussed below. For all other cases, there is no viola-
tion within errors. Also, we always observe an oscillatory behavior, indicative of a complex-mass
pole. In the next section, we present our new results for the infrared values ofDL(p2).

3. Results

Our large-lattice study was done considering the pure SU(2) case, with a standard Wilson
action and lattice sizesN3

s ×Nt ranging from 483 × 4 to 1923 × 16. For our runs we employ a
cold start, performing a projection on positive-Polyakov-loop configurations. Also, gauge fixing
is implemented using stochastic overrelaxation. The gluon dressing functionsare normalized to
1 at 2 GeV. We considered several values of the lattice parameterβ , allowing a broad range of
temperatures. Our procedure for determining the physical temperatureT is described in [8]. The
momentum-space expressions for the transverse and longitudinal gluon propagatorsDT(p2) and
DL(p2) can be found e.g. in [12].

As can be seen from the data in [9], the longitudinal (electric) propagatorDL(p2) displays
severe systematic effects aroundTc for the smaller values ofNt . These effects are strongest at
temporal extentNt = 4 and large values ofNs. We note that the systematic errors for smallNt

come from two different sources: “pure” small-Nt effects (associated with discretization errors)
and strong dependence on the spatial lattice sizeNs at fixedNt , for the cases in which the value of
Nt is smaller than 16. The latter effect was observed only atT .Tc, whereas the former is present in
a wider range of temperatures aroundTc. In particular, the finite-spatial-volume effects forDL(p2)

at Nt = 4 are strongest atTc, but are still very large atT = 0.98Tc and are much less pronounced
for T = 1.01Tc.

In Fig. 2 we show data forDL(0) as a function of the temperatureT. We show such values as
obtained from all our runs, grouping together (by color) the runs performed at the same temporal
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Figure 2: Infrared-plateau value for the longitudinal gluon propagator [estimated byDL(0)] as a function
of the temperature for the full range ofT/Tc values. Data points from runs at the same value ofNt are
grouped together and indicated by the label “DL0_Nt ”, where “sym” is used to indicate symmetric lattices
(i.e.T = 0).

extentNt . We remark that, as said above, not all curves ofDL(p2) reach a clear plateau in the
infrared limit. Nevertheless, looking at the value ofDL(0) gives us an indication of what this
plateau might be, and is useful to expose the strong systematic effects discussed here. In Fig. 3 we
present an enlarged view of the same values for the temperature region aroundTc.

We can see that the very suggestive sharp peak atTc seen forNt = 4 (corresponding to the red
points in Figs. 2 and 3) turns into a finite maximum around 0.9Tc for Nt = 16 (blue points). In other
words, the observed singularity at smaller values ofNt seems to disappear. The only indication of
a possible singular behavior is a finite maximum close to (but notat) the critical point, somewhat
reminiscent of a pseudo-critical point as observed for the magnetic susceptibility of spin models in
an external magnetic field (see e.g. [20, 21]).

Let us mention that, as reported in [9], good fits are obtained (in the transverse and longitudinal
cases) to several generalized Gribov-Stingl forms, indicating the presence of comparable real and
imaginary parts of pole masses. These masses are smooth functions ofT around the transition, and
the imaginary part of the electric mass seems to get smaller at higherT, as expected.
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Figure 3: Same as Fig. 2 above, but showing only the temperature regionaroundTc.

4. Conclusions

We have performed numerical simulations of the longitudinal (electric) and transverse (mag-
netic) Landau-gauge gluon propagator at nonzero temperature for pure SU(2) lattice gauge theory.
We employ the largest lattices to date, especially for temperatures around the deconfinement phase
transition. We are currently completing our study of fitting forms for describing the massive be-
havior of the propagator [6]. From our data for the longitudinal gluon propagatorDL(p2), we have
uncovered quite severe systematic effects.

Our results point to unusually large systematic errors around criticality. In particular, very
strong effects related to small values of the temporal extentNt of the lattice are seen on the lower
side of the transition temperature and are practically absent just aboveTc. Strong finite-size effects
are certainly not unexpected around a second-order phase transition, such as the deconfinement
transition in the SU(2) theory. On the other hand, we note that our data showa nontrivial depen-
dence on the finitetemporalsize of the lattice and on the distance from the critical point, not easily
interpreted as a finite-size or a discretization effect.

After removing these systematic effects, i.e. considering the data obtained withthe largest
value ofNt in Fig. 3, we see that the sharp peak suggested by the red points in Fig. 2 turns into
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a smooth maximum, at around 0.9Tc. In agreement with several observations that the gluon mass
scale is a smooth function of the temperature, this suggests that there is no specific signature of
deconfinement associated withDL(p2). In fact, the only qualitative feature of a deconfined phase
we observe is the lack of violation of reflection positivity for the real-spaceelectric propagator,
which holds however for allT 6= 0 considered.

Finally, let us mention the similarity between our smaller-lattice results for the SU(2)case and
existing results for SU(3). In view of this, we trust that statements that the inverse of the zero-
momentum value of the gluon propagator might provide an order parameter for the deconfinement
phase transition (such as recently made in [19]) will be taken with the due caution.
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